423 research outputs found

    A multi-agent method for forming and dynamic restructuring of pareto optimal coalitions

    Get PDF

    A Multi-Agent Method for Forming and Dynamic Restructuring of Pareto Optimal Coalitions

    Get PDF
    International audienceThe first part of this paper presents a coalition formation method for multi-agent systems which finds a Pareto optimal solution without aggregating the preferences of the agents. This protocol is adapted to problems requiring coordination by coalition formation, where it is undesirable, or not possible, to aggregate the preferences of the agents. The second part proposes an extension of this method enabling dynamic restructuring of coalitions when changes occur in the system

    Support System Model for Value based Group Decision on Roof System Selection

    Get PDF
    A group decision support system is required on a value-based decision because there are different concern caused by differing preferences, experiences, and background. It is to enable each decision-maker to evaluate and rank the solution alternatives before engaging into negotiation with other decision-makers. Stakeholder of multi-criteria decision making problems usually evaluates the alternative solution from different perspective, making it possible to have a dominant solution among the alternatives. Each stakeholder needs to identify the goals that can be optimized and those that can be compromised in order to reach an agreement with other stakeholders. This paper presents group decision model involving three decision-makers on the selection of suitable system for a building’s roof. The objective of the research is to find an agreement options model and coalition algorithms for multi person decision with two main preferences of value which are function and cost. The methodology combines value analysis method using Function Analysis System Technique (FAST); Life Cycle Cost analysis, group decision analysis method based on Analytical Hierarchy Process (AHP) in a satisfying options, and Game theory-based agent system to develop agreement option and coalition formation for the support system. The support system bridges theoretical gap between automated design in construction domain and automated negotiation in information technology domain by providing a structured methodology which can lead to systematic support system and automated negotiation. It will contribute to value management body of knowledge as an advanced method for creativity and analysis phase, since the practice of this knowledge is teamwork based. In the case of roof system selection, it reveals the start of the first negotiation round. Some of the solutions are not an option because no individual stakeholder or coalition of stakeholders desires to select it. The result indicates the alternative solution that will be the best-fit solution. In this problem, a space frame system is the ‘best-fit’ solution for the roof system

    Optimal Creation of Agent Coalitions for Manufacturing and Control

    Get PDF
    Cooperation among agents has been the object of many recently published papers. Cooperation might be formulated and work in many forms, between different kinds of agents and situations in which they are situated. In addition, it is also influenced a lot by the agent's intelligence, mutual relationships and the willingness to cooperate with other ones. The main focus of this paper is to solve the problem of how to create optimal coalitions of the given agents with the purpose to improve the collective performance. The coalition is a possible form of cooperation in which the common goal has the highest priority for all members included in it. Further, we introduce methods for finding the sub-optimal solutions, which are able to approximate the range of the optimal solutions. Finally we discuss the problem of creating coalition with more parameters

    CO-EVOLUTIONARY BIDDING AND COOPERATION STRATEGIES FOR BUYERS IN POWER MARKETS

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Mechanism design for distributed task and resource allocation among self-interested agents in virtual organizations

    Get PDF
    The aggregate power of all resources on the Internet is enormous. The Internet can be viewed as a massive virtual organization that holds tremendous amounts of information and resources with different ownerships. However, little is known about how to run this organization efficiently. This dissertation studies the problems of distributed task and resource allocation among self-interested agents in virtual organizations. The developed solutions are not allocation mechanisms that can be imposed by a centralized designer, but decentralized interaction mechanisms that provide incentives to self-interested agents to behave cooperatively. These mechanisms also take computational tractability into consideration due to the inherent complexity of distributed task and resource allocation problems. Targeted allocation mechanisms can achieve global task allocation efficiency in a virtual organization and establish stable resource-sharing communities based on agentsâÃÂàown decisions about whether or not to behave cooperatively. This high level goal requires solving the following problems: synthetic task allocation, decentralized coalition formation and automated multiparty negotiation. For synthetic task allocation, in which each task needs to be accomplished by a virtual team composed of self-interested agents from different real organizations, my approach is to formalize the synthetic task allocation problem as an algorithmic mechanism design optimization problem. I have developed two approximation mechanisms that I prove are incentive compatible for a synthetic task allocation problem. This dissertation also develops a decentralized coalition formation mechanism, which is based on explicit negotiation among self-interested agents. Each agent makes its own decisions about whether or not to join a candidate coalition. The resulting coalitions are stable in the core in terms of coalition rationality. I have applied this mechanism to form resource sharing coalitions in computational grids and buyer coalitions in electronic markets. The developed negotiation mechanism in the decentralized coalition formation mechanism realizes automated multilateral negotiation among self-interested agents who have symmetric authority (i.e., no mediator exists and agents are peers). In combination, the decentralized allocation mechanisms presented in this dissertation lay a foundation for realizing automated resource management in open and scalable virtual organizations

    Mechanism design for distributed task and resource allocation among self-interested agents in virtual organizations

    Get PDF
    The aggregate power of all resources on the Internet is enormous. The Internet can be viewed as a massive virtual organization that holds tremendous amounts of information and resources with different ownerships. However, little is known about how to run this organization efficiently. This dissertation studies the problems of distributed task and resource allocation among self-interested agents in virtual organizations. The developed solutions are not allocation mechanisms that can be imposed by a centralized designer, but decentralized interaction mechanisms that provide incentives to self-interested agents to behave cooperatively. These mechanisms also take computational tractability into consideration due to the inherent complexity of distributed task and resource allocation problems. Targeted allocation mechanisms can achieve global task allocation efficiency in a virtual organization and establish stable resource-sharing communities based on agentsâÃÂàown decisions about whether or not to behave cooperatively. This high level goal requires solving the following problems: synthetic task allocation, decentralized coalition formation and automated multiparty negotiation. For synthetic task allocation, in which each task needs to be accomplished by a virtual team composed of self-interested agents from different real organizations, my approach is to formalize the synthetic task allocation problem as an algorithmic mechanism design optimization problem. I have developed two approximation mechanisms that I prove are incentive compatible for a synthetic task allocation problem. This dissertation also develops a decentralized coalition formation mechanism, which is based on explicit negotiation among self-interested agents. Each agent makes its own decisions about whether or not to join a candidate coalition. The resulting coalitions are stable in the core in terms of coalition rationality. I have applied this mechanism to form resource sharing coalitions in computational grids and buyer coalitions in electronic markets. The developed negotiation mechanism in the decentralized coalition formation mechanism realizes automated multilateral negotiation among self-interested agents who have symmetric authority (i.e., no mediator exists and agents are peers). In combination, the decentralized allocation mechanisms presented in this dissertation lay a foundation for realizing automated resource management in open and scalable virtual organizations

    Entrepreneurial Action and Entrepreneurial Rents

    Get PDF
    This dissertation is comprised of three independently standing research papers (chapters 2, 3 and 4) that come together in the common theme of investigating the relationship between entrepreneurial action and performance. The introduction chapter argues that this theme is the main agenda of an entrepreneurial approach to strategy, and provides some background and context for the core chapters. The entrepreneurial approach to strategy falls in line with an array of action-based theories of strategy that trace their economic foundations to the Austrian school of economics. Chapters 2 and 3 take a game theoretical modeling and computer simulation approach and represent one of the first attempts at formal analysis of the Austrian economic foundations of action-based strategy theory. These chapters attempt to demonstrate ways in which formal analysis can begin to approach compatibility with the central tenets of Austrian economics (i.e., subjectivism, dynamism, and methodological individualism). The simulation results shed light on our understanding of the relationship between opportunity creation and discovery, and economic rents in the process of moving towards and away from equilibrium. Chapter 4 operationalizes creation and discovery as exploration and exploitation in an empirical study using data from the Kauffman Firm Survey and highlights the trade-offs faced by start-ups in linking action to different dimensions of performance (i.e., survival, profitability, and getting acquired). Using multinomial logistic regression for competing risks analysis and random effects panel data regression, we find that high technology start-ups face a trade-off between acquisition likelihood and profitability-given-survival while low and medium technology start-ups face a trade-off between survival and profitability-given-survival. Chapter 5 concludes the dissertation by highlighting some of the overall contributions and suggesting avenues for future research

    North-South Climate Change Negotiations: a Sequential Game with Asymmetric Information

    Get PDF
    This article determines the conditions under which the Southern countries should act together, or separately, while negotiating with the North about climate change policy and about the conditions for future Southern engagement. The paper models the international negotiations with complete and with asymmetric information in a dynamic framework. Results show that, depending on their characteristics, the different players can obtain benefits delaying the moment of the agreement.Bargaining theory, asymmetric information, climate change, international cooperation
    corecore