139,867 research outputs found

    LeaF: A Learning-based Fault Diagnostic System for Multi-Robot Teams

    Get PDF
    The failure-prone complex operating environment of a standard multi-robot application dictates some amount of fault-tolerance to be incorporated into every system. In fact, the quality of the incorporated fault-tolerance has a direct impact on the overall performance of the system. Despite the extensive work being done in the field of multi-robot systems, there does not exist a general methodology for fault diagnosis and recovery. The objective of this research, in part, is to provide an adaptive approach that enables the robot team to autonomously detect and compensate for the wide variety of faults that could be experienced. The key feature of the developed approach is its ability to learn useful information from encountered faults, unique or otherwise, towards a more robust system. As part of this research, we analyzed an existing multi-agent architecture, CMM – Causal Model Method – as a fault diagnostic solution for a sample multi-robot application. Based on the analysis, we claim that a causal model approach is effective for anticipating and recovering from many types of robot team errors. However, the analysis also showed that the CMM method in its current form is incomplete as a turn-key solution. Due to the significant number of possible failure modes in a complex multi-robot application, and the difficulty in anticipating all possible failures in advance, one cannot guarantee the generation of a complete a priori causal model that identifies and specifies all faults that may occur in the system. Therefore, based on these preliminary studies, we designed an alternate approach, called LeaF: Learning based Fault diagnostic architecture for multi-robot teams. LeaF is an adaptive method that uses its experience to update and extend its causal model to enable the team, over time, to better recover from faults when they occur. LeaF combines the initial fault model with a case-based learning algorithm, LID – Lazy Induction of Descriptions — to allow robot team members to diagnose faults and to automatically update their causal models. The modified LID algorithm uses structural similarity between fault characteristics as a means of classifying previously un-encountered faults. Furthermore, the use of learning allows the system to identify and categorize unexpected faults, enable team members to learn from problems encountered by others, and make intelligent decisions regarding the environment. To evaluate LeaF, we implemented it in two challenging and dynamic physical multi-robot applications. The other significant contribution of the research is the development of metrics to measure the fault-tolerance, within the context of system performance, for a multi-robot system. In addition to developing these metrics, we also outline potential methods to better interpret the obtained measures towards truly understanding the capabilities of the implemented system. The developed metrics are designed to be application independent and can be used to evaluate and/or compare different fault-tolerance architectures like CMM and LeaF. To the best of our knowledge, this approach is the only one that attempts to capture the effect of intelligence, reasoning, or learning on the effective fault-tolerance of the system, rather than relying purely on traditional redundancy based measures. Finally, we show the utility of the designed metrics by applying them to the obtained physical robot experiments, measuring the effective fault-tolerance and system performance, and subsequently analyzing the calculated measures to help better understand the capabilities of LeaF

    An OSA-CBM Multi-Agent Vehicle Health Management Architecture for Self-Health Awareness

    Get PDF
    Integrated Vehicle Health Management (IVHM) systems on modern aircraft or autonomous unmanned vehicles should provide diagnostic and prognostic capabilities with lower support costs and amount of data traffic. When mission objectives cannot be reached for the control system since unanticipated operating conditions exists, namely a failure, the mission plan must be revised or altered according to the health monitoring system assessment. Representation of the system health knowledge must facilitate interaction with the control system to compensate for subsystem degradation. Several generic architectures have been described for the implementation of health monitoring systems and their integration with the control system. In particular, the Open System Architecture - Condition-Based Maintenance (OSA-CBM) approach is considered in this work as initial point, and it is evolved in the sense of self-health awareness, by defining an appropriated multi-agent smart health management architecture based on smart device models, communication agents and a distributed control system. A case study about its application on fuel-cells as auxiliary power generator will demonstrate the integration.Postprint (published version

    Multi-Agent Cooperation for Particle Accelerator Control

    Get PDF
    We present practical investigations in a real industrial controls environment for justifying theoretical DAI (Distributed Artificial Intelligence) results, and we discuss theoretical aspects of practical investigations for accelerator control and operation. A generalized hypothesis is introduced, based on a unified view of control, monitoring, diagnosis, maintenance and repair tasks leading to a general method of cooperation for expert systems by exchanging hypotheses. This has been tested for task and result sharing cooperation scenarios. Generalized hypotheses also allow us to treat the repetitive diagnosis-recovery cycle as task sharing cooperation. Problems with such a loop or even recursive calls between the different agents are discussed

    Multi-agent systems for power engineering applications - part 1 : Concepts, approaches and technical challenges

    Get PDF
    This is the first part of a 2-part paper that has arisen from the work of the IEEE Power Engineering Society's Multi-Agent Systems (MAS) Working Group. Part 1 of the paper examines the potential value of MAS technology to the power industry. In terms of contribution, it describes fundamental concepts and approaches within the field of multi-agent systems that are appropriate to power engineering applications. As well as presenting a comprehensive review of the meaningful power engineering applications for which MAS are being investigated, it also defines the technical issues which must be addressed in order to accelerate and facilitate the uptake of the technology within the power and energy sector. Part 2 of the paper explores the decisions inherent in engineering multi-agent systems for applications in the power and energy sector and offers guidance and recommendations on how MAS can be designed and implemented

    On-line transformer condition monitoring through diagnostics and anomaly detection

    Get PDF
    This paper describes the end-to-end components of an on-line system for diagnostics and anomaly detection. The system provides condition monitoring capabilities for two in- service transmission transformers in the UK. These transformers are nearing the end of their design life, and it is hoped that intensive monitoring will enable them to stay in service for longer. The paper discusses the requirements on a system for interpreting data from the sensors installed on site, as well as describing the operation of specific diagnostic and anomaly detection techniques employed. The system is deployed on a substation computer, collecting and interpreting site data on-line

    Issues in integrating existing multi-agent systems for power engineering applications

    Get PDF
    Multi-agent systems (MAS) have proven to be an effective platform for diagnostic and condition monitoring applications in the power industry. For example, a multi-agent system architecture, entitled condition monitoring multi-agent system (COMMAS) (McArthur et al., 2004), has been applied to the ultra high frequency (UHF) monitoring of partial discharge activity inside transformers. Additionally, a multi-agent system, entitled protection engineering diagnostic agents (PEDA) (Hossack et al., 2003), has demonstrated the use of MAS technology for automated and enhanced post-fault analysis of power systems disturbances based on SCADA and digital fault recorder (DFR) data. In this paper, the authors propose the integration of COMMAS and PEDA as a means of offering enhanced decision support to engineers tasked with managing transformer assets. By providing automatically interpreted data related to condition monitoring and power system disturbances, the proposed integrated system offer engineers a more comprehensive picture of the health of a given transformer. Defects and deterioration in performance can be correlated with the operating conditions it experiences. The integration of COMMAS and PEDA has highlighted the issues inherent to the inter-operation of existing multi-agent systems and, in particular, the issues surrounding the use of differing ontologies. The authors believe that these issues need to be addressed if there is to be widespread deployment of MAS technology within the power industry. This paper presents research undertaken to integrate the two MAS and to deal with ontology issues

    Automated post-fault diagnosis of power system disturbances

    Get PDF
    In order to automate the analysis of SCADA and digital fault recorder (DFR) data for a transmission network operator in the UK, the authors have developed an industrial strength multi-agent system entitled protection engineering diagnostic agents (PEDA). The PEDA system integrates a number of legacy intelligent systems for analyzing power system data as autonomous intelligent agents. The integration achieved through multi-agent systems technology enhances the diagnostic support offered to engineers by focusing the analysis on the most pertinent DFR data based on the results of the analysis of SCADA. Since November 2004 the PEDA system has been operating online at a UK utility. In this paper the authors focus on the underlying intelligent system techniques, i.e. rule-based expert systems, model-based reasoning and state-of-the-art multi-agent system technology, that PEDA employs and the lessons learnt through its deployment and online use

    Assessment of the added value of the Twente Photoacoustic Mammoscope in breast cancer diagnosis\ud

    Get PDF
    Purpose: Photoacoustic (PA) imaging is a recently developed breast cancer imaging technique. In order to enhance successful clinical implementation, we quantified the potential clinical value of different scenarios incorporating PA imaging by means of multi-criteria analysis. From this analysis, the most promising area of application for PA imaging in breast cancer diagnosis is determined, and recommendations are provided to optimize the design of PA imaging. - \ud Methods: The added value of PA imaging was assessed in two areas of application in the diagnostic track. These areas include PA imaging as an alternative to x-ray mammography and ultrasonography in early stage diagnosis, and PA imaging as an alternative to Magnetic Resonance Imaging (MRI) in later stage diagnosis. The added value of PA imaging was assessed with respect to four main criteria (costs, diagnostic performance, patient comfort and risks). An expert panel composed of medical, technical and management experts was asked to assess the relative importance of the criteria in comparing the alternative diagnostic devices. The judgments of the experts were quantified based on the validated pairwise comparison technique of the Analytic Hierarchy Process, a technique for multi-criteria analysis. Sensitivity analysis was applied to account for the uncertainty of the outcomes. - \ud Results: Among the considered alternatives, PA imaging is the preferred technique due to its non-invasiveness, low cost and low risks. However, the experts do not expect large differences in diagnostic performance. The outcomes suggest that design changes to improve the diagnostic performance of PA imaging should focus on the quality of the reconstruction algorithm, detector sensitivity, detector bandwidth and the number of wavelengths used. - \ud Conclusion: The AHP method was useful in recommending the most promising area of application in the diagnostic track for which PA imaging can be implemented, this being early diagnosis, as a substitute for the combined use of x-ray mammography and ultrasonography

    An agent-based implementation of hidden Markov models for gas turbine condition monitoring

    Get PDF
    This paper considers the use of a multi-agent system (MAS) incorporating hidden Markov models (HMMs) for the condition monitoring of gas turbine (GT) engines. Hidden Markov models utilizing a Gaussian probability distribution are proposed as an anomaly detection tool for gas turbines components. The use of this technique is shown to allow the modeling of the dynamics of GTs despite a lack of high frequency data. This allows the early detection of developing faults and avoids costly outages due to asset failure. These models are implemented as part of a MAS, using a proposed extension of an established power system ontology, for fault detection of gas turbines. The multi-agent system is shown to be applicable through a case study and comparison to an existing system utilizing historic data from a combined-cycle gas turbine plant provided by an industrial partner

    Data management of on-line partial discharge monitoring using wireless sensor nodes integrated with a multi-agent system

    Get PDF
    On-line partial discharge monitoring has been the subject of significant research in previous years but little work has been carried out with regard to the management of on-site data. To date, on-line partial discharge monitoring within a substation has only been concerned with single plant items, so the data management problem has been minimal. As the age of plant equipment increases, so does the need for condition monitoring to ensure maximum lifespan. This paper presents an approach to the management of partial discharge data through the use of embedded monitoring techniques running on wireless sensor nodes. This method is illustrated by a case study on partial discharge monitoring data from an ageing HVDC reactor
    • 

    corecore