6,262 research outputs found

    Customized normalization clustering meth-odology for consumers with heterogeneous characteristics

    Get PDF
    The increasing use and development of renewable energy sources and distributed generation, brought several changes to the power system operation. Electricity markets worldwide are complex and dynamic environments with very particular characteristics, resulting from their restructuring and evolution into regional and continental scales, along with the constant changes brought by the increasing necessity for an adequate integration of renewable energy sources. With the eminent implementation of micro grids and smart grids, new business models able to cope with the new opportunities are being developed. Virtual Power Players are a new type of player, which allows aggregating a diversity of entities, e.g. generation, storage, electric vehicles, and consumers, to facilitate their participation in the electricity markets and to provide a set of new services promoting generation and consumption efficiency, while improving players` benefits. This paper proposes a clustering methodology regarding the remuneration and tariff of VPP. It proposes a model to implement fair and strategic remuneration and tariff methodologies, using a clustering algorithm, applied to load values, submitted to different types of normalization process, which creates sub-groups of data according to their correlations. The clustering process is evaluated so that the number of data sub-groups that brings the most added value for the decision making process is found, according to the players characteristics. The proposed clustering methodology has been tested in a real distribution network with 30 bus, including residential and commercial consumers, photovoltaic generation and storage unit

    National innovation systems, developing countries, and the role of intermediaries: a critical review of the literature

    No full text
    Developed over the past three decades, the national innovation system concept (NIS) has been widely used by both scholars and policy makers to explain how interactions between a set of distinct, nationally bounded institutions supports and facilitates technological change and the emergence and diffusion of new innovations. This concept provides a framework by which developing countries can adopt for purposes of catching up. Initially conceived on structures and interactions identified in economically advanced countries, the application of the NIS concept to developing countries has been gradual and has coincided – in the NIS literature – with a move away from overly macro-interpretations to an emphasis on micro-level interactions and processes, with much of this work questioning the nation state as the most appropriate level of analysis, as well as the emergence of certain intermediary actors thought to facilitate knowledge exchange between actors and institutions. This paper reviews the NIS literature chronologically, showing how this shift in emphasis has diminished somewhat the importance of both institutions, particularly governments, and the process of institutional capacity building. In doing so, the paper suggests that more recent literature on intermediaries such as industry associations may offer valuable insights to how institutional capacity building occurs and how it might be directed, particularly in the context of developing countries where governance capacities are often lacking, contributing to less effective innovation systems, stagnant economies, and unequal development

    The countryside in urbanized Flanders: towards a flexible definition for a dynamic policy

    Get PDF
    The countryside, the rural area, the open space, … many definitions are used for rural Flanders. Everyone makes its own interpretation of the countryside, considering it as a place for living, working or recreating. The countryside is more than just a geographical area: it is an aggregate of physical, social, economic and cultural functions, strongly interrelated with each other. According to international and European definitions of rural areas there would be almost no rural area in Flanders. These international definitions are all developed to be used for analysis and policy within their specific context. They are not really applicable to Flanders because of the historical specificity of its spatial structure. Flanders is characterized by a giant urbanization pressure on its countryside while internationally rural depopulation is a point of interest. To date, for every single rural policy initiative – like the implementation of the European Rural Development Policy – Flanders used a specifically adapted definition, based on existing data or previously made delineations. To overcome this oversupply of definitions and delineations, the Flemish government funded a research project to obtain a clear and flexible definition of the Flemish countryside and a dynamic method to support Flemish rural policy aims. First, an analysis of the currently used definitions of the countryside in Flanders was made. It is clear that, depending on the perspective or the policy context, another definition of the countryside comes into view. The comparative study showed that, according to the used criteria, the area percentage of Flanders that is rural, varies between 9 and 93 per cent. Second, dynamic sets of criteria were developed, facilitating a flexible definition of the countryside, according to the policy aims concerned. This research part was focused on 6 policy themes, like ‘construction, maintenance and management of local (transport) infrastructures’ and ‘provision of (minimum) services (education, culture, health care, …)’. For each theme a dynamic set of criteria or indicators was constructed. These indicators make it possible to show where a policy theme manifests itself and/or where policy interventions are possible or needed. In this way every set of criteria makes up a new definition of rural Flanders. This method is dynamic; new data or insights can easily be incorporated and new criteria sets can be developed if other policy aims come into view. The developed method can contribute to a more region-oriented and theme-specific rural policy and funding mechanism

    MASCEM: Optimizing the performance of a multi-agent system

    Get PDF
    The electricity market sector has suffered massive changes in the last few decades. The worldwide electricity market restructuring has been conducted to potentiate the increase in competitiveness and thus decrease electricity prices. However, the complexity in this sector has grown significantly as well, with the emergence of several new types of players, interacting in a constantly changing environment. Several electricity market simulators have been introduced in recent years with the purpose of sup-porting operators, regulators, and the involved players in understanding and dealing with this complex environment. This paper presents a new, enhanced version of MASCEM (Multi-Agent System for Competitive Electricity Markets), an electricity market simulator with over ten years of existence, which had to be restructured in order to be able to face the highly demanding requirements that the decision support in this field requires. This restructuring optimizes the performance of MASCEM, both in results and execution time.info:eu-repo/semantics/publishedVersio

    Global Systems Science and Energy Systems

    Get PDF
    In the present globally interconnected world energy is generated, stored, transmitted and consumed and its related waste disposed or recycled- through a complex and dynamic system of systems. A central challenge for Global System Science is to focus on the multiple interactions of different scales of the energy systems: from smart micro-grids to super grids. To what extent can these two approaches coexist? How do these two apparently divergent trends and configuration relate to each other and be managed for a better coordination and efficiency? Global System Science should be able to identify what kinds of factors are most relevant for the global energy systems and to what particular pressures are they more sensitive (e.g. not necessarily prices but perhaps to other variables outside the energy systems). This report present the key points and open issues in emerging energy systems and highlights questions and challenges to global system science applied to energy systems. It is based on the discussions and results of the workshop on "Vision in global system science: energy futures" held in Brussels on 18th and 19th March 2013 and organized by DG Connect in collaboration with Joint Research Centre, Institute for Energy and Transport, Petten.JRC.F.3-Energy securit

    Narrative-driven alternative roads to achieve mid-century CO2 net neutrality in Europe

    Get PDF
    The tightened climate mitigation targets of the EU green deal raise an important question: Which strategy should be used to achieve carbon emissions net neutrality? This study explores stakeholder-designed narratives of the future energy system development within the deep decarbonization context. European carbon net-neutrality goals are put under test in a model comparison exercise using state of the art Energy-Environment-Economy (E3) models: ETM-UCL, PRIMES and REMIND. Results show that while achieving the transition to carbon neutrality by mid-century is feasible under quite different future energy systems, some robust commonalities emerge. Electrification of end use sectors combined with large-scale expansion of renewable energy is a no-regret decision for all strategies; Carbon Dioxide Removal (CDR) plays an important role for achieving net-neutral targets under all scenarios, but is most relevant when demand-side changes are limited; hydrogen and synthetic fuels can be a relevant mitigation option for mid-century mitigation in hard-to-abate sectors; energy efficiency can reduce the supply system strain. Finally, high carbon prices (300-900€/tCO2) are needed under all strategies in order to achieve carbon net neutrality in 2050

    The gas chain: influence of its specificities on the liberalisation process. NBB Working Papers. No. 122, 16 November 2007

    Get PDF
    Like other network industries, the European gas supply industry has been liberalised, along the lines of what has been done in the United Kingdom and the United States, by opening up to competition the upstream and downstream segments of essential transmission infrastructure. The aim of this first working paper is to draw attention to some of the stakes in the liberalisation of the gas market whose functioning cannot disregard the network infrastructure required to bring this fuel to the consumer, a feature it shares with the electricity market. However, gas also has the specific feature of being a primary energy source that must be transported from its point of extraction. Consequently, opening the upstream supply segment of the market to competition is not so obvious in the European context, because, contrary to the examples of the North American and British gas markets, these supply channels are largely in the hands of external suppliers and thus fall outside the scope of EU legislation on the liberalisation and organisation of the internal market in gas. Competition on the downstream gas supply segment must also adapt to the constraints imposed by access to the grid infrastructure, which, in the case of gas in Europe, goes hand in hand with the constraint of dependence on external suppliers. Hence the opening to competition of upstream and downstream markets is not "synchronous", a discrepancy which can weaken the impact of liberalisation. Moreover, the separation of activities necessary for ensuring free competition in some segments of the market is coupled with major changes in the way the gas chain operates, with the appearance of new markets, new price mechanisms and new intermediaries. Starting out from a situation where gas supply was in the hands of vertically-integrated operators, the new regulatory framework that has been set up must, on the one hand, ensure that competitive forces can be given free rein, and, on the other hand, that free and fair competition helps the gas chain to operate coherently, at lower cost and in the interests of consumers, for whom the stakes are high as natural gas is an important input for many industrial manufacturing processes, even a "commodity" almost of basic necessity

    Regional patterns of energy production and consumption factors in Europe Exploratory Project EREBILAND - European Regional Energy Balance and Innovation Landscape

    Get PDF
    The Resilient Energy Union with Forward Looking Climate Change Policy is one the ten priorities of the overarching Agenda for Jobs, Growth, Fairness and Democratic Change of the European Commission. The Communication on the Energy Union package and its Annex clearly identify EU-wide targets and policy objectives. The Exploratory Project EREBILAND (European Regional Energy Balance and Innovation Landscape) aims at supporting efficient patterns of regional energy supply and demand in Europe. Integration of spatial scales, from EU-wide to regional or local, and a cross-sector approach, are at the core of the project. The approach is based on territorial disaggregation of information, and the development of optimisation scenarios at regional scale. It is centred around the Land Use-based Integrated Sustainability Assessment (LUISA) modelling platform for the assessment of policies and investments that have spatial impacts, in interaction with the JRC-EU-TIMES model – a bottom-up, technology-rich model representing the EU28+ energy system – and the model RHOMOLO that integrates economic and some social dimensions of regional development. Based on currently operational and up-to-date tools available within the EC, the purpose of the EREBILAND project is to: • provide an overview of the current trends of regional energy production and consumption patterns, and • link these patterns to the structural characteristics of the regions, among which: population density and urbanisation trends, development of different economic sectors, and availability of resources and technological infrastructure. This report presents the outcomes of the EREBILAND Project during its first year. In particular, electricity generation and energy consumed by transport sector are analysed, under the EU Energy Reference Scenario 2013, throughout the period 2015 - 2030. Main results of the analysis dedicated to the electricity generation are: • Electricity generation from biomass increases in the large majority of European regions; a slight decrease can be found only in regions producing electricity already in 2015 above the EU28 average (in Denmark). • Electricity produced from biogas experiences less steep changes then biomass, with almost 50% of NUTS2 decreasing or not changing considerably the amount of electricity produced from this source. • Coal: electricity generated from lignite undergoes a significant reduction in all regions using this fuel already in 2015. Conversely, trends in electricity generated from hard coal are more stable, with some regions experiencing an increase: the average change is higher than 50% (a few regions in Eastern European countries), but steeper increases can be found in Austria, Sweden and the United Kingdom. • The amount of electricity generated from gas generally decreases across Europe from 2015 to 2030, with an average decrease higher than 90%. • Geothermal is the least diffuse source used to generate electricity in Europe and only few regions are represented. • Hydroelectric: the amount of electricity generated from this source is in general forecasted to increase in Europe from 2015 to 2030. Exceptions are a few regions in Bulgaria, Czech Republic, Germany, Spain, Greece, Hungary, Portugal, Romania, Sweden and most NUTS2 in the UK. • Electricity generated from nuclear is forecasted to decrease in the majority of the regions with active nuclear power plants in 2015. • Oil: the majority of the regions generating electricity from this fuel in 2015, experience a decrease in 2030. Notable exceptions are a few regions in Austria, Belgium, Germany, Greece, Hungary, Italy, Poland and Slovenia. • Electricity produced from solar is forecasted to increase in almost three quarters of European regions. The only regions where electricity from solar is forecasted to decrease are located in Greece and Romania. • Wind: electricity generated from wind, both on- and off-shore, is in general forecasted to increase in Europe. The largest increases in electricity generated from on-shore wind (above 5 times the 2015 generation levels) can be found in few regions in Czech Republic, Finland, Lubuskie in Poland, the north-est NUTS2 in Romania, Western Slovakia and Slovenia. Main results of the analysis dedicated to energy consumption of the transport sector are: • In more than two thirds of European regions, the energy supplied to cars (fuel: diesel) decreases from 2015 to 2030, with an average decrease of almost 20%. • The energy supplied to cars (fuels: gas and LPG) is forecasted to decrease throughout all European regions. The decrease is more gradual in few regions in Denmark, Portugal, Greece, Spain and Italy. • Energy supplied to cars (fuel: gasoline) is forecasted to decrease in more than 80% of the European regions, with an average decrease of 27%. • The energy supplied to heavy duty trucks (fuel: diesel) is forecasted to progressively decrease from 2015 to 2030 in 66% of the European regions, with an average decrease of more than 8%. • The energy supplied to light duty trucks (fuel: diesel) is forecasted to steeply decrease throughout European regions. • The energy supplied to light duty trucks (fuel: gasoline) is forecasted to increase in more than 90% of European regions, with an average increase of more than 40% from 2015 to 2030. The highest increases (above 70%) take place in eleven regions in Germany, Walloon Brabant in Belgium, Flevoland in the Netherlands, Lower Austria and Eastern Macedonia and Thrace. • The energy supplied to inter-city buses running on diesel is forecasted to increase from 2015 to 2030 in the large majority of European regions, with an average increase of more than 19%. • The energy supplied to urban buses (fuels: gas, diesel and gasoline) is going to moderately increase from 2015 to 2030 in almost 90% regions throughout EU-28, with an average growth of 15%. • Energy supplied to motorcycles (fuel: gasoline) is forecasted to increase in more than 80% of European NUTS2, with an average growth of 16%. • Energy supplied to cars (fuels: hybrid, electric and hydrogen) is forecasted to increase throughout Europe, in general with sharp increases. • Energy supplied to heavy duty trucks (fuel: gas) and light duty trucks (fuel: LPG) is forecasted to increase in all European regions from 2015 to 2020. In most NUTS2 this trend is kept or even accelerates between 2020 and 2030. The only regions where the trend is reversed (lower energy supplied in 2030 compared to 2020) are located in Poland, Greece, Finland (only Åland) and Croatia (only Jadranska Hrvatska).JRC.H.8-Sustainability Assessmen

    The gas chain : influence of its specificities on the liberalisation process

    Get PDF
    Like other network industries, the European gas supply industry has been liberalised, along the lines of what has been done in the United Kingdom and the United States, by opening up to competition the upstream and downstream segments of essential transmission infrastructure. The aim of this first working paper is to draw attention to some of the stakes in the liberalisation of the gas market whose functioning cannot disregard the network infrastructure required to bring this fuel to the consumer, a feature it shares with the electricity market. However, gas also has the specific feature of being a primary energy source that must be transported from its point of extraction. Consequently, opening the upstream supply segment of the market to competition is not so obvious in the European context, because, contrary to the examples of the North American and British gas markets, these supply channels are largely in the hands of external suppliers and thus fall outside the scope of EU legislation on the liberalisation and organisation of the internal market in gas. Competition on the downstream gas supply segment must also adapt to the constraints imposed by access to the grid infrastructure, which, in the case of gas in Europe, goes hand in hand with the constraint of dependence on external suppliers. Hence the opening to competition of upstream and downstream markets is not "synchronous", a discrepancy which can weaken the impact of liberalisation. Moreover, the separation of activities necessary for ensuring free competition in some segments of the market is coupled with major changes in the way the gas chain operates, with the appearance of new markets, new price mechanisms and new intermediaries. Starting out from a situation where gas supply was in the hands of vertically-integrated operators, the new regulatory framework that has been set up must, on the one hand, ensure that competitive forces can be given free rein, and, on the other hand, that free and fair competition helps the gas chain to operate coherently, at lower cost and in the interests of consumers, for whom the stakes are high as natural gas is an important input for many industrial manufacturing processes, even a "commodity" almost of basic necessity.network industries, gas industry, gas utility, liberalisation, regulation, deregulation, market structure, European gas supply, oligopoly, OPEG
    corecore