2,502 research outputs found

    Modular Self-Reconfigurable Robot Systems

    Get PDF
    The field of modular self-reconfigurable robotic systems addresses the design, fabrication, motion planning, and control of autonomous kinematic machines with variable morphology. Modular self-reconfigurable systems have the promise of making significant technological advances to the field of robotics in general. Their promise of high versatility, high value, and high robustness may lead to a radical change in automation. Currently, a number of researchers have been addressing many of the challenges. While some progress has been made, it is clear that many challenges still exist. By illustrating several of the outstanding issues as grand challenges that have been collaboratively written by a large number of researchers in this field, this article has shown several of the key directions for the future of this growing fiel

    A Plug and Produce Framework for Industrial Collaborative Robots

    Get PDF

    A Rapidly Reconfigurable Robotics Workcell and Its Applictions for Tissue Engineering

    Get PDF
    This article describes the development of a component-based technology robot system that can be rapidly configured to perform a specific manufacturing task. The system is conceived with standard and inter-operable components including actuator modules, rigid link connectors and tools that can be assembled into robots with arbitrary geometry and degrees of freedom. The reconfigurable "plug-and-play" robot kinematic and dynamic modeling algorithms are developed. These algorithms are the basis for the control and simulation of reconfigurable robots. The concept of robot configuration optimization is introduced for the effective use of the rapidly reconfigurable robots. Control and communications of the workcell components are facilitated by a workcell-wide TCP/IP network and device level CAN-bus networks. An object-oriented simulation and visualization software for the reconfigurable robot is developed based on Windows NT. Prototypes of the robot systems configured to perform 3D contour following task and the positioning task are constructed and demonstrated. Applications of such systems for biomedical tissue scaffold fabrication are considered.Singapore-MIT Alliance (SMA

    Development of a software application for machine tool reconfiguration using a knowledge-based engineering system approach

    Full text link
    The automation processes industry has become increasingly expensive, which is why some small and medium sized enterprises are incapable of buying machine tools with automatic systems. This means that their processes are manual in many cases, and as a result they often have to rework their developed products due to the lack of precision and efficiency in their production processes. Considering that current manufacturing systems with variable machining and turning centers are gradually replacing dedicated systems for medium lot size production, the production systems' basic element, the machine tool, must be capable of working at high speeds with precision, and it must be reconfigurable. These systems must also be compatible and convertible in order to create economic benefits for customers. This article describes a specific software architecture designed to record all the data, information and knowledge concerning manufacturing systems. The software allows for the creation of a new knowledge database and works with it in the reconfiguration of machine tools depending on the rules, requirements and parameters needed to effectively modify production processes or products.Hincapie, M.; Guemes, D.; Contero González, MR.; Ramirez, M.; Diaz, C. (2016). Development of a software application for machine tool reconfiguration using a knowledge-based engineering system approach. International Journal of Knowledge-Based and Intelligent Engineering Systems. 20(1):49-63. doi:10.3233/KES-160334S496320

    Integrated Reconfigurable Autonomous Architecture System

    Get PDF
    Advances in state-of-the-art architectural robotics and artificially intelligent design algorithms have the potential not only to transform how we design and build architecture, but to fundamentally change our relationship to the built environment. This system is situated within a larger body of research related to embedding autonomous agency directly into the built environment through the linkage of AI, computation, and robotics. It challenges the traditional separation between digital design and physical construction through the development of an autonomous architecture with an adaptive lifecycle. Integrated Reconfigurable Autonomous Architecture System (IRAAS) is composed of three components: 1) an interactive platform for user and environmental data input, 2) an agent-based generative space planning algorithm with deep reinforcement learning for continuous spatial adaptation, 3) a distributed robotic material system with bi-directional cyber-physical control protocols for simultaneous state alignment. The generative algorithm is a multi-agent system trained using deep reinforcement learning to learn adaptive policies for adjusting the scales, shapes, and relational organization of spatial volumes by processing changes in the environment and user requirements. The robotic material system was designed with a symbiotic relationship between active and passive modular components. Distributed robots slide their bodies on tracks built into passive blocks that enable their locomotion while utilizing a locking and unlocking system to reconfigure the assemblages they move across. The three subsystems have been developed in relation to each other to consider both the constraints of the AI-driven design algorithm and the robotic material system, enabling intelligent spatial adaptation with a continuous feedback chain

    A model-based approach for supporting flexible automation production systems and an agent-based implementaction

    Get PDF
    158 p.En esta Tesis Doctoral se plantea una arquitectura de gestión genérica y personalizable, capaz de asegurar el cumplimiento de los requisitos de calidad de servicio (QoS) de un sistema de control industrial. Esta arquitectura permite la modificación de los mecanismos de detección y recuperación de los requisitos de QoS en función de diversos tipos de ésta. Como prueba de concepto, la arquitectura de gestión ha sido implementada mediante un middleware basado en sistemas multi-agente. Este middleware proporciona una serie de agentes distribuidos, los cuales se encargan de la monitorización y recuperación de las QoS en caso de su perdida.La incorporación de los mecanismos de reconfiguración incrementa la complejidad de los sistemas de control. Con el fin de facilitar el diseño de estos sistemas, se ha presentado un framework basado en modelos que guía y facilita el diseño de los sistemas de control reconfigurables. Este framework proporciona una serie de herramientas basadas en modelos que permiten la generación automática del código de control del sistema, así como de los mecanismos de monitorización y reconfiguración de los agentes del middleware.La implementación de la arquitectura ha sido validada mediante una serie de escenarios basados en una célula de montaje real

    A Survey on Formation Control of Small Satellites

    Get PDF

    A Generic Multi-Layer Architecture Based on ROS-JADE Integration for Autonomous Transport Vehicles

    Get PDF
    The design and operation of manufacturing systems is evolving to adapt to different challenges. One of the most important is the reconfiguration of the manufacturing process in response to context changes (e.g., faulty equipment or urgent orders, among others). In this sense, the Autonomous Transport Vehicle (ATV) plays a key role in building more flexible and decentralized manufacturing systems. Nowadays, robotic frameworks (RFs) are used for developing robotic systems such as ATVs, but they focus on the control of the robotic system itself. However, social abilities are required for performing intelligent interaction (peer-to-peer negotiation and decision-making) among the different and heterogeneous Cyber Physical Production Systems (such as machines, transport systems and other equipment present in the factory) to achieve manufacturing reconfiguration. This work contributes a generic multi-layer architecture that integrates a RF with a Multi-Agent System (MAS) to provide social abilities to ATVs. This architecture has been implemented on ROS and JADE, the most widespread RF and MAS framework, respectively. We believe this to be the first work that addresses the intelligent interaction of transportation systems for flexible manufacturing environments in a holistic form.This work was financed by MINECO/FEDER, UE (grant number DPI2015-68602-R) and by UPV/EHU (grant number PPG17/56)
    corecore