1,528 research outputs found

    Designing Multi-User MIMO for Energy Efficiency: When is Massive MIMO the Answer?

    Get PDF
    Assume that a multi-user multiple-input multiple-output (MIMO) communication system must be designed to cover a given area with maximal energy efficiency (bit/Joule). What are the optimal values for the number of antennas, active users, and transmit power? By using a new model that describes how these three parameters affect the total energy efficiency of the system, this work provides closed-form expressions for their optimal values and interactions. In sharp contrast to common belief, the transmit power is found to increase (not decrease) with the number of antennas. This implies that energy efficient systems can operate at high signal-to-noise ratio (SNR) regimes in which the use of interference-suppressing precoding schemes is essential. Numerical results show that the maximal energy efficiency is achieved by a massive MIMO setup wherein hundreds of antennas are deployed to serve relatively many users using interference-suppressing regularized zero-forcing precoding.Comment: Published at IEEE Wireless Communications and Networking Conference (WCNC 2014), 6 pages, 5 figures, 1 table. This version improves the visual presentation of Fig. 2 and corrects a typo in Lemma

    Massive MIMO Multicasting in Noncooperative Cellular Networks

    Full text link
    We study the massive multiple-input multiple-output (MIMO) multicast transmission in cellular networks where each base station (BS) is equipped with a large-scale antenna array and transmits a common message using a single beamformer to multiple mobile users. We first show that when each BS knows the perfect channel state information (CSI) of its own served users, the asymptotically optimal beamformer at each BS is a linear combination of the channel vectors of its multicast users. Moreover, the optimal combining coefficients are obtained in closed form. Then we consider the imperfect CSI scenario where the CSI is obtained through uplink channel estimation in timedivision duplex systems. We propose a new pilot scheme that estimates the composite channel which is a linear combination of the individual channels of multicast users in each cell. This scheme is able to completely eliminate pilot contamination. The pilot power control for optimizing the multicast beamformer at each BS is also derived. Numerical results show that the asymptotic performance of the proposed scheme is close to the ideal case with perfect CSI. Simulation also verifies the effectiveness of the proposed scheme with finite number of antennas at each BS.Comment: to appear in IEEE JSAC Special Issue on 5G Wireless Communication System
    corecore