1,316 research outputs found

    Cognition-Based Networks: A New Perspective on Network Optimization Using Learning and Distributed Intelligence

    Get PDF
    IEEE Access Volume 3, 2015, Article number 7217798, Pages 1512-1530 Open Access Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence (Article) Zorzi, M.a , Zanella, A.a, Testolin, A.b, De Filippo De Grazia, M.b, Zorzi, M.bc a Department of Information Engineering, University of Padua, Padua, Italy b Department of General Psychology, University of Padua, Padua, Italy c IRCCS San Camillo Foundation, Venice-Lido, Italy View additional affiliations View references (107) Abstract In response to the new challenges in the design and operation of communication networks, and taking inspiration from how living beings deal with complexity and scalability, in this paper we introduce an innovative system concept called COgnition-BAsed NETworkS (COBANETS). The proposed approach develops around the systematic application of advanced machine learning techniques and, in particular, unsupervised deep learning and probabilistic generative models for system-wide learning, modeling, optimization, and data representation. Moreover, in COBANETS, we propose to combine this learning architecture with the emerging network virtualization paradigms, which make it possible to actuate automatic optimization and reconfiguration strategies at the system level, thus fully unleashing the potential of the learning approach. Compared with the past and current research efforts in this area, the technical approach outlined in this paper is deeply interdisciplinary and more comprehensive, calling for the synergic combination of expertise of computer scientists, communications and networking engineers, and cognitive scientists, with the ultimate aim of breaking new ground through a profound rethinking of how the modern understanding of cognition can be used in the management and optimization of telecommunication network

    The IPTS Report No. 48, October 2000

    Get PDF

    From Data to Actions in Intelligent Transportation Systems: A Prescription of Functional Requirements for Model Actionability

    Get PDF
    Advances in Data Science permeate every field of Transportation Science and Engineering, resulting in developments in the transportation sector that are data-driven. Nowadays, Intelligent Transportation Systems (ITS) could be arguably approached as a “story” intensively producing and consuming large amounts of data. A diversity of sensing devices densely spread over the infrastructure, vehicles or the travelers’ personal devices act as sources of data flows that are eventually fed into software running on automatic devices, actuators or control systems producing, in turn, complex information flows among users, traffic managers, data analysts, traffic modeling scientists, etc. These information flows provide enormous opportunities to improve model development and decision-making. This work aims to describe how data, coming from diverse ITS sources, can be used to learn and adapt data-driven models for efficiently operating ITS assets, systems and processes; in other words, for data-based models to fully become actionable. Grounded in this described data modeling pipeline for ITS, we define the characteristics, engineering requisites and challenges intrinsic to its three compounding stages, namely, data fusion, adaptive learning and model evaluation. We deliberately generalize model learning to be adaptive, since, in the core of our paper is the firm conviction that most learners will have to adapt to the ever-changing phenomenon scenario underlying the majority of ITS applications. Finally, we provide a prospect of current research lines within Data Science that can bring notable advances to data-based ITS modeling, which will eventually bridge the gap towards the practicality and actionability of such models.This work was supported in part by the Basque Government for its funding support through the EMAITEK program (3KIA, ref. KK-2020/00049). It has also received funding support from the Consolidated Research Group MATHMODE (IT1294-19) granted by the Department of Education of the Basque Government

    The IPTS Report No. 48, October 2000

    Get PDF

    2nd Symposium on Management of Future motorway and urban Traffic Systems (MFTS 2018): Booklet of abstracts: Ispra, 11-12 June 2018

    Get PDF
    The Symposium focuses on future traffic management systems, covering the subjects of traffic control, estimation, and modelling of motorway and urban networks, with particular emphasis on the presence of advanced vehicle communication and automation technologies. As connectivity and automation are being progressively introduced in our transport and mobility systems, there is indeed a growing need to understand the implications and opportunities for an enhanced traffic management as well as to identify innovative ways and tools to optimise traffic efficiency. In particular the debate on centralised versus decentralised traffic management in the presence of connected and automated vehicles has started attracting the attention of the research community. In this context, the Symposium provides a remarkable opportunity to share novel ideas and discuss future research directions.JRC.C.4-Sustainable Transpor

    Measuring named data networks

    Get PDF
    2020 Spring.Includes bibliographical references.Named Data Networking (NDN) is a promising information-centric networking (ICN) Internet architecture that addresses the content directly rather than addressing servers. NDN provides new features, such as content-centric security, stateful forwarding, and in-network caches, to better satisfy the needs of today's applications. After many years of technological research and experimentation, the community has started to explore the deployment path for NDN. One NDN deployment challenge is measurement. Unlike IP, which has a suite of measurement approaches and tools, NDN only has a few achievements. NDN routing and forwarding are based on name prefixes that do not refer to individual endpoints. While rich NDN functionalities facilitate data distribution, they also break the traditional end-to-end probing based measurement methods. In this dissertation, we present our work to investigate NDN measurements and fill some research gaps in the field. Our thesis of this dissertation states that we can capture a substantial amount of useful and actionable measurements of NDN networks from end hosts. We start by comparing IP and NDN to propose a conceptual framework for NDN measurements. We claim that NDN can be seen as a superset of IP. NDN supports similar functionalities provided by IP, but it has unique features to facilitate data retrieval. The framework helps identify that NDN lacks measurements in various aspects. This dissertation focuses on investigating the active measurements from end hosts. We present our studies in two directions to support the thesis statement. We first present the study to leverage the similarities to replicate IP approaches in NDN networks. We show the first work to measure the NDN-DPDK forwarder, a high-speed NDN forwarder designed and implemented by the National Institute of Standards and Technology (NIST), in a real testbed. The results demonstrate that Data payload sizes dominate the forwarding performance, and efficiently using every fragment to improve the goodput. We then present the first work to replicate packet dispersion techniques in NDN networks. Based on the findings in the NDN-DPDK forwarder benchmark, we devise the techniques to measure interarrivals for Data packets. The results show that the techniques successfully estimate the capacity on end hosts when 1Gbps network cards are used. Our measurements also indicate the NDN-DPDK forwarder introduces variance in Data packet interarrivals. We identify the potential bottlenecks and the possible causes of the variance. We then address the NDN specific measurements, measuring the caching state in NDN networks from end hosts. We propose a novel method to extract fingerprints for various caching decision mechanisms. Our simulation results demonstrate that the method can detect caching decisions in a few rounds. We also show that the method is not sensitive to cross-traffic and can be deployed on real topologies for caching policy detection
    corecore