27,170 research outputs found

    Nonlinear Model Predictive Control for Multi-Micro Aerial Vehicle Robust Collision Avoidance

    Full text link
    Multiple multirotor Micro Aerial Vehicles sharing the same airspace require a reliable and robust collision avoidance technique. In this paper we address the problem of multi-MAV reactive collision avoidance. A model-based controller is employed to achieve simultaneously reference trajectory tracking and collision avoidance. Moreover, we also account for the uncertainty of the state estimator and the other agents position and velocity uncertainties to achieve a higher degree of robustness. The proposed approach is decentralized, does not require collision-free reference trajectory and accounts for the full MAV dynamics. We validated our approach in simulation and experimentally.Comment: Video available on: https://www.youtube.com/watch?v=Ot76i9p2ZZo&t=40

    Information Acquisition with Sensing Robots: Algorithms and Error Bounds

    Full text link
    Utilizing the capabilities of configurable sensing systems requires addressing difficult information gathering problems. Near-optimal approaches exist for sensing systems without internal states. However, when it comes to optimizing the trajectories of mobile sensors the solutions are often greedy and rarely provide performance guarantees. Notably, under linear Gaussian assumptions, the problem becomes deterministic and can be solved off-line. Approaches based on submodularity have been applied by ignoring the sensor dynamics and greedily selecting informative locations in the environment. This paper presents a non-greedy algorithm with suboptimality guarantees, which does not rely on submodularity and takes the sensor dynamics into account. Our method performs provably better than the widely used greedy one. Coupled with linearization and model predictive control, it can be used to generate adaptive policies for mobile sensors with non-linear sensing models. Applications in gas concentration mapping and target tracking are presented.Comment: 9 pages (two-column); 2 figures; Manuscript submitted to the 2014 IEEE International Conference on Robotics and Automatio

    A path planning and path-following control framework for a general 2-trailer with a car-like tractor

    Full text link
    Maneuvering a general 2-trailer with a car-like tractor in backward motion is a task that requires significant skill to master and is unarguably one of the most complicated tasks a truck driver has to perform. This paper presents a path planning and path-following control solution that can be used to automatically plan and execute difficult parking and obstacle avoidance maneuvers by combining backward and forward motion. A lattice-based path planning framework is developed in order to generate kinematically feasible and collision-free paths and a path-following controller is designed to stabilize the lateral and angular path-following error states during path execution. To estimate the vehicle state needed for control, a nonlinear observer is developed which only utilizes information from sensors that are mounted on the car-like tractor, making the system independent of additional trailer sensors. The proposed path planning and path-following control framework is implemented on a full-scale test vehicle and results from simulations and real-world experiments are presented.Comment: Preprin
    • …
    corecore