346 research outputs found

    A Cross Layer Routing Protocol for OFDMA Based Mobile Ad Hoc Networks.

    Get PDF
    PhDMobile ad hoc networks are of growing interest because of their unique characteristics and advantages in many practical applications. QoS provision acts as a major challenge in the routing protocol design in the real-world mobile ad hoc networks, especially for the real-time services. OFDM is a new technology which has many advantages over the other modulation schemes. Because of its prominent features, many popular wireless standards have adopted it as physical layer modulation, such as IEEE 802.11 series, WiMAX, 3GPP LTE etc, and it is extended to multiuser environment known as OFDMA. So far none of the existing ad hoc routing protocols fully account for the OFDMA based mobile ad hoc networks. In this thesis, a QoS routing protocol is proposed for OFDMA based mobile ad hoc networks. A signal strength-based sub-channel allocation scheme is proposed in the routing protocol aiming to reduce the signalling overhead and cochannel interference. The performance of the proposed routing protocol is compared with other alternative proposals through simulations using OPNET simulator. Moreover, a partial time synchronization and a null subcarrier based frequency synchronization algorithms are also proposed for OFDMA based ad hoc network to further support and facilitate the proposed sub-channel allocation scheme and routing protocol

    Comparative Analysis between OFDMA and SC-FDMA: Model, Features and Applications

    Get PDF
    This paper represents Orthogonal Frequency Division Multiple Access (OFDMA) and Single Carrier Frequency Division Multiple Access (SCFDMA) techniques along with the Orthogonal Frequency Division Multiplexing (OFDM). The concept, model, features, scopes, applications and limitation for both types of multiple access have been discussed in this paper. In present 4G and 5G cellular communication system, both OFDMA and SC-FDMA have a notable applications. Dividing the available spectrum into overlapping orthogonal narrowband sub bands, OFDMA ensures high spectral efficiency. Besides by allocating multiple sub carriers to each user, OFDMA provides high data rate, reduces inter blockage interference, minimizes frequency selective fading and so on. But it suffers from high peak to average power ration (PAPR) which results in high power consumption at the transmitter end. SC-FDMA is one of the most promising techniques to solve the PAPR problems. Besides it also removes the capacity problem of wireless cellular systems and provides higher spectral efficiency, depending on multiplexing signals based on their spatial signature. On the other hand, in OFDM due to fixed subcarrier allocations for each user and its performance can suffer from narrowband fading and interference

    A Link Quality Model for Generalised Frequency Division Multiplexing

    Get PDF
    5G systems aim to achieve extremely high data rates, low end-to-end latency and ultra-low power consumption. Recently, there has been considerable interest in the design of 5G physical layer waveforms. One important candidate is Generalised Frequency Division Multiplexing (GFDM). In order to evaluate its performance and features, system-level studies should be undertaken in a range of scenarios. These studies, however, require highly complex computations if they are performed using bit-level simulators. In this paper, the Mutual Information (MI) based link quality model (PHY abstraction), which has been regularly used to implement system-level studies for Orthogonal Frequency Division Multiplexing (OFDM), is applied to GFDM. The performance of the GFDM waveform using this model and the bit-level simulation performance is measured using different channel types. Moreover, a system-level study for a GFDM based LTE-A system in a realistic scenario, using both a bit-level simulator and this abstraction model, has been studied and compared. The results reveal the accuracy of this model using realistic channel data. Based on these results, the PHY abstraction technique can be applied to evaluate the performance of GFDM based systems in an effective manner with low complexity. The maximum difference in the Packet Error Rate (PER) and throughput results in the abstraction case compared to bit-level simulation does not exceed 4% whilst offering a simulation time saving reduction of around 62,000 times.Comment: 5 pages, 8 figures, accepted in VTC- spring 201

    Software Implementation of Orthogonal Frequency Division Multiplexing (OFDM)Scheme for Mobile Radio Channel

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is a transmission technique which ensures efficient utilization of the spectrum by allowing overlap of carriers. OFDM is a combination of modulation and multiplexing that is used in the transmission of information and data. Compared with the other wireless transmission techniques like Frequency Division Multiple Access (FDMA), Code Division Multiple Access (CDMA), OFDM has numerous advantages like high spectral density, its robustness to channel fading, its ability to overcome several radio impairment factors such as effect of AWGN, impulse noise, multipath fading, etc. Due to this it finds wide application in Digital Audio Broadcasting (DAB), Digital Video Broadcasting (DVB), and Wireless LAN. Most of the wireless LAN standards like IEEE 802.11a or IEEE 802.11g use the OFDM as the main multiplexing scheme for better use of spectrum. In fact in the 4G telecommunication system OFDMA is the backbone of it. This project deals with the software simulation of this OFDM system in a mobile radio channel using the software tools of MATLAB® and SIMULINK®. From this simulation the performance of OFDM system in mobile radio channel is studied. Apart from this we also compare the OFDM system performance with the performance of the DS-CDMA system in the mobile radio channel

    Techniques to Enhance Spectral Efficiency of OFDM Wireless Systems

    Get PDF

    PROCESS FOR BREAKING DOWN THE LTE SIGNAL TO EXTRACT KEY INFORMATION

    Get PDF
    The increasingly important role of Long Term Evolution (LTE) has increased security concerns among the service providers and end users and made security of the network even more indispensable. The main thrust of this thesis is to investigate if the LTE signal can be broken down in a methodical way to obtain information that would otherwise be private; e.g., the Global Positioning System (GPS) location of the user equipment/base station or identity (ID) of the user. The study made use of signal simulators and software to analyze the LTE signal to develop a method to remove noise, breakdown the LTE signal and extract desired information. From the simulation results, it was possible to extract key information in the downlink like the Downlink Control Information (DCI), Cell-Radio Network Temporary Identifier (C-RNTI) and physical Cell Identity (Cell-ID). This information can be modified to cause service disruptions in the network within a reasonable amount of time and with modest computing resources.Defence Science and Technology Agency, SingaporeApproved for public release; distribution is unlimited
    corecore