4,976 research outputs found

    Gaussian Message Passing for Overloaded Massive MIMO-NOMA

    Full text link
    This paper considers a low-complexity Gaussian Message Passing (GMP) scheme for a coded massive Multiple-Input Multiple-Output (MIMO) systems with Non-Orthogonal Multiple Access (massive MIMO-NOMA), in which a base station with NsN_s antennas serves NuN_u sources simultaneously in the same frequency. Both NuN_u and NsN_s are large numbers, and we consider the overloaded cases with Nu>NsN_u>N_s. The GMP for MIMO-NOMA is a message passing algorithm operating on a fully-connected loopy factor graph, which is well understood to fail to converge due to the correlation problem. In this paper, we utilize the large-scale property of the system to simplify the convergence analysis of the GMP under the overloaded condition. First, we prove that the \emph{variances} of the GMP definitely converge to the mean square error (MSE) of Linear Minimum Mean Square Error (LMMSE) multi-user detection. Secondly, the \emph{means} of the traditional GMP will fail to converge when Nu/Ns<(21)25.83 N_u/N_s< (\sqrt{2}-1)^{-2}\approx5.83. Therefore, we propose and derive a new convergent GMP called scale-and-add GMP (SA-GMP), which always converges to the LMMSE multi-user detection performance for any Nu/Ns>1N_u/N_s>1, and show that it has a faster convergence speed than the traditional GMP with the same complexity. Finally, numerical results are provided to verify the validity and accuracy of the theoretical results presented.Comment: Accepted by IEEE TWC, 16 pages, 11 figure

    Segregating Event Streams and Noise with a Markov Renewal Process Model

    Get PDF
    DS and MP are supported by EPSRC Leadership Fellowship EP/G007144/1

    Deep Feature-based Face Detection on Mobile Devices

    Full text link
    We propose a deep feature-based face detector for mobile devices to detect user's face acquired by the front facing camera. The proposed method is able to detect faces in images containing extreme pose and illumination variations as well as partial faces. The main challenge in developing deep feature-based algorithms for mobile devices is the constrained nature of the mobile platform and the non-availability of CUDA enabled GPUs on such devices. Our implementation takes into account the special nature of the images captured by the front-facing camera of mobile devices and exploits the GPUs present in mobile devices without CUDA-based frameorks, to meet these challenges.Comment: ISBA 201
    corecore