309 research outputs found

    Solar UAV for long endurance flights

    Get PDF
    The project have been done during the four months stay in Lithuania by Marc Olmo and LLibert Chamizo. The aim of the project was to obtain an Unmanned Aerial Vehicle powered by solar energy that was able to flight for as long as possible it within the limitations which are the budget, the time and the technological limitations. During the limited time, the team have been working in all the necessary phases to build a real scale and fully functional Solar UAV. This phases were the following; Theoretical Calculations, Design, Simulation, Building, Tests of the Airframe, Solar Energy Circuit Design and Building 2nd phase tests and Conclusion Obtaining. Through all the process several technical and engineering decisions have been made leading the team to obtain a fully functional 4,4m wingspan fixed wing UAV with a TOW of 5,5 Kg which is perfectly pilotable The final achievements have been a UAV capable of long endurance flight within daytime. The model achieved was able to maintain level, climb and turn perfectly using just the power gathered by the solar cells in its wing. During the development of the project the possibility of the multiday flight have been discussed leading to the conclusion that it's viable but not within the frame of this project. There have been done several tests under actual mission parameters loading the plane with the weight it would be carried during the missions that are most likely solar uav related such as mapping or surveillance. The final result have been correct and lead to an optimistic opinion about the whole Solar UAV paradigm and about the prototype modification and improvement in the near future to achieve even better results (which have been overviewed and planned in the actual report). A fatal error drove the airplane to a nosedive fall with disastrous consequences, the whole project feels and success though it's undoubtable

    Multimodal hybrid powerplant for unmanned aerial systems (UAS) robotics

    Get PDF
    Most UAS propulsion systems currently utilize either Internal Combustion Engines (ICE) or Electric Motor (EM) prime movers. ICE are favoured for aircraft use due to the superior energy density of fuel compared to batteries required for EM, however EM have several significant advantages. A major advantage of EM is that they are inherently self starting have predictable response characteristics and well developed electronic control systems. EMs are thus very easy to adapt to automatic control, whereas ICE have more complex control response and an auxiliary starting motor is required for automated starting. This paper presents a technique for determining the performance, feasibility and effectiveness of powerplant hybridisation for small UAS. A Hybrid Powerplant offers the possibility of a radical improvement in the autonomy of the aircraft for various tasks without sacrificing payload range or endurance capability. In this work a prototype Aircraft Hybrid Powerplant (AHP) was designed, constructed and tested. It is shown that an additional 35% continuous thrust power can be supplied from the hybrid system with an overall weight penalty of 5%, for a given UAS. Dynamometer and windtunnel results were obtained to validate theoretical propulsion load curves. Using measured powerplant data and an assumed baseline airframe performance characteristic, theoretical endurance comparisons between hybrid and non-hybrid powerplants were determined. A flight dynamic model for the AHP was developed and validated for the purposes of operational scenario analysis. Through this simulation it is shown that climb rates can be improved by 56% and endurance increased by 13%. The advantages of implementing a hybrid powerplant have been baselined in terms of payload range and endurance. Having satisfied these parameters, a whole new set of operational possibilities arises which cannot be performed by non-self-starting ICE only powered aircraft. A variety of autonomous robotic aircraft tasks enabled by the hybrid powerplant is discussed

    A fly-by-wireless UAV platform based on a flexible and distributed system architecture

    Get PDF
    This paper reports and describes the diverse stages concerning the development of an unmanned aerial vehicle (UAV) named “Aeronave Inteligente com Visão Artificial”, better known by its acronym as AIVA. The design and development of the first aerial platform, the onboard ommunications, the instrumentation system, the bidirectional communications platform to/from ground station, the flight control system, the navigation strategies, as well as the vision systems to help navigation and to carry out the planned surveillance missions, are addressed in this paper. One of the main innovative issues of this platform is the distributed onboard wireless network, based on Bluetooth technology and on a multiprocessor architecture system. These features increase the platform flexibility. The goals already accomplished so far reveal interesting developments to be used successfully in commercial UAV platforms

    Long-term Informative Path Planning with Autonomous Soaring

    Get PDF
    The ability of UAVs to cover large areas efficiently is valuable for information gathering missions. For long-term information gathering, a UAV may extend its endurance by accessing energy sources present in the atmosphere. Thermals are a favourable source of wind energy and thermal soaring is adopted in this thesis to enable long-term information gathering. This thesis proposes energy-constrained path planning algorithms for a gliding UAV to maximise information gain given a mission time that greatly exceeds the UAV's endurance. This thesis is motivated by the problem of probabilistic target-search performed by an energy-constrained UAV, which is tasked to simultaneously search for a lost ground target and explore for thermals to regain energy. This problem is termed informative soaring (IFS) and combines informative path planning (IPP) with energy constraints. IFS is shown to be NP-hard by showing that it has a similar problem structure to the weight-constrained shortest path problem with replenishments. While an optimal solution may not exist in polynomial time, this thesis proposes path planning algorithms based on informed tree search to find high quality plans with low computational cost. This thesis addresses complex probabilistic belief maps and three primary contributions are presented: • First, IFS is formulated as a graph search problem by observing that any feasible long-term plan must alternate between 1) information gathering between thermals and 2) replenishing energy within thermals. This is a first step to reducing the large search state space. • The second contribution is observing that a complex belief map can be viewed as a collection of information clusters and using a divide and conquer approach, cluster tree search (CTS), to efficiently find high-quality plans in the large search state space. In CTS, near-greedy tree search is used to find locally optimal plans and two global planning versions are proposed to combine local plans into a full plan. Monte Carlo simulation studies show that CTS produces similar plans to variations of exhaustive search, but runs five to 20 times faster. The more computationally efficient version, CTSDP, uses dynamic programming (DP) to optimally combine local plans. CTSDP is executed in real time on board a UAV to demonstrate computational feasibility. • The third contribution is an extension of CTS to unknown drifting thermals. A thermal exploration map is created to detect new thermals that will eventually intercept clusters, and therefore be valuable to the mission. Time windows are computed for known thermals and an optimal cluster visit schedule is formed. A tree search algorithm called CTSDrift combines CTS and thermal exploration. Using 2400 Monte Carlo simulations, CTSDrift is evaluated against a Full Knowledge method that has full knowledge of the thermal field and a Greedy method. On average, CTSDrift outperforms Greedy in one-third of trials, and achieves similar performance to Full Knowledge when environmental conditions are favourable

    Landing site reachability and decision making for UAS forced landings

    Get PDF
    After a huge amount of success within the military, the benefits of the use of unmanned aerial systems over manned aircraft is obvious. They are becoming cheaper and their functions advancing to such a point that there is now a large drive for their use by civilian operators. However there are a number of significant challenges that are slowing their inevitable integration into the national airspace systems of countries. A large array of emergency situations will need to be dealt with autonomously by contingency management systems to prevent potentially deadly incidences. One such emergency situation that will need autonomous intervention, is the total loss of thrust from engine failure. The complex multi faceted task of landing the stricken aircraft at a potentially unprepared site is called a forced landing. This thesis presents methods to address a number of critical parts of a forced landing system for use by an unmanned aerial system. In order for an emergency landing site to be considered, it needs to be within glide range. In order to find a landing site s reachability from the point of engine failure the aircraft s glide performance and a glide path must be known. A method by which to calculate the glide performance, both from aircraft parameters or experiments is shown. These are based on a number of steady state assumptions to make them generic and quick to compute. Despite the assumptions, these are shown to have reasonable accuracy. A minimum height loss path to the landing site is defined, which takes account of a steady uniform wind. While this path is not the path to be flown it enables a measure of how reachable a landing site is, as any extra height the aircraft has once it gets to the site makes a site more reachable. It is shown that this method is fast enough to be run online and is generic enough for use on a range of aircraft. Based on identified factors that make a landing site more suitable, a multi criteria decision making Bayesian network is developed to decide upon which site a unmanned aircraft should land in. It can handle uncertainty and non-complete information while guaranteeing a fast reasonable decision, which is critical in this time sensitive situation. A high fidelity simulation environment and flight test platform are developed in order to test the performance of the developed algorithms. The test environments developed enable rapid prototyping of algorithms not just within the scope of this thesis, but on a range of vehicle types. In simulation the minimum height loss paths show good accuracy, for two completely different types of aircraft. The decision making algorithms show that they are capable of being ran online in a flight test. They make a reasonable decision and are capable of quickly reacting to changing conditions, enabling redirection to a more suitable landing site
    • …
    corecore