44 research outputs found

    Heterogeneous mission planning for a single unmanned aerial vehicle (UAV) with attention-based deep reinforcement learning

    Get PDF
    Large-scale and complex mission environments require unmanned aerial vehicles (UAVs) to deal with various types of missions while considering their operational and dynamic constraints. This article proposes a deep learning-based heterogeneous mission planning algorithm for a single UAV. We first formulate a heterogeneous mission planning problem as a vehicle routing problem (VRP). Then, we solve this by using an attention-based deep reinforcement learning approach. Attention-based neural networks are utilized as they have powerful computational efficiency in processing the sequence data for the VRP. For the input to the attention-based neural networks, the unified feature representation on heterogeneous missions is introduced, which encodes different types of missions into the same-sized vectors. In addition, a masking strategy is introduced to be able to consider the resource constraint (e.g., flight time) of the UAV. Simulation results show that the proposed approach has significantly faster computation time than that of other baseline algorithms while maintaining a relatively good performance

    Emergent Behavior Development and Control in Multi-Agent Systems

    Get PDF
    Emergence in natural systems is the development of complex behaviors that result from the aggregation of simple agent-to-agent and agent-to-environment interactions. Emergence research intersects with many disciplines such as physics, biology, and ecology and provides a theoretical framework for investigating how order appears to spontaneously arise in complex adaptive systems. In biological systems, emergent behaviors allow simple agents to collectively accomplish multiple tasks in highly dynamic environments; ensuring system survival. These systems all display similar properties: self-organized hierarchies, robustness, adaptability, and decentralized task execution. However, current algorithmic approaches merely present theoretical models without showing how these models actually create hierarchical, emergent systems. To fill this research gap, this dissertation presents an algorithm based on entropy and speciation - defined as morphological or physiological differences in a population - that results in hierarchical emergent phenomena in multi-agent systems. Results show that speciation creates system hierarchies composed of goal-aligned entities, i.e. niches. As niche actions aggregate into more complex behaviors, more levels emerge within the system hierarchy, eventually resulting in a system that can meet multiple tasks and is robust to environmental changes. Speciation provides a powerful tool for creating goal-aligned, decentralized systems that are inherently robust and adaptable, meeting the scalability demands of current, multi-agent system design. Results in base defense, k-n assignment, division of labor and resource competition experiments, show that speciated populations create hierarchical self-organized systems, meet multiple tasks and are more robust to environmental change than non-speciated populations

    Multi-Robot Systems: Challenges, Trends and Applications

    Get PDF
    This book is a printed edition of the Special Issue entitled ā€œMulti-Robot Systems: Challenges, Trends, and Applicationsā€ that was published in Applied Sciences. This Special Issue collected seventeen high-quality papers that discuss the main challenges of multi-robot systems, present the trends to address these issues, and report various relevant applications. Some of the topics addressed by these papers are robot swarms, mission planning, robot teaming, machine learning, immersive technologies, search and rescue, and social robotics

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    Proceedings of the 10th International Conference on Ecological Informatics: translating ecological data into knowledge and decisions in a rapidly changing world: ICEI 2018

    Get PDF
    The Conference Proceedings are an impressive display of the current scope of Ecological Informatics. Whilst Data Management, Analysis, Synthesis and Forecasting have been lasting popular themes over the past nine biannual ICEI conferences, ICEI 2018 addresses distinctively novel developments in Data Acquisition enabled by cutting edge in situ and remote sensing technology. The here presented ICEI 2018 abstracts captures well current trends and challenges of Ecological Informatics towards: ā€¢ regional, continental and global sharing of ecological data, ā€¢ thorough integration of complementing monitoring technologies including DNA-barcoding, ā€¢ sophisticated pattern recognition by deep learning, ā€¢ advanced exploration of valuable information in ā€˜big dataā€™ by means of machine learning and process modelling, ā€¢ decision-informing solutions for biodiversity conservation and sustainable ecosystem management in light of global changes

    Proceedings of the 10th International Conference on Ecological Informatics: translating ecological data into knowledge and decisions in a rapidly changing world: ICEI 2018

    Get PDF
    The Conference Proceedings are an impressive display of the current scope of Ecological Informatics. Whilst Data Management, Analysis, Synthesis and Forecasting have been lasting popular themes over the past nine biannual ICEI conferences, ICEI 2018 addresses distinctively novel developments in Data Acquisition enabled by cutting edge in situ and remote sensing technology. The here presented ICEI 2018 abstracts captures well current trends and challenges of Ecological Informatics towards: ā€¢ regional, continental and global sharing of ecological data, ā€¢ thorough integration of complementing monitoring technologies including DNA-barcoding, ā€¢ sophisticated pattern recognition by deep learning, ā€¢ advanced exploration of valuable information in ā€˜big dataā€™ by means of machine learning and process modelling, ā€¢ decision-informing solutions for biodiversity conservation and sustainable ecosystem management in light of global changes

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space
    corecore