30 research outputs found

    Exploring BFAST to detect forest changes in Portugal

    Get PDF
    Costa, H., Giraldo, A., & Caetano, M. (2020). Exploring BFAST to detect forest changes in Portugal. In L. Bruzzone, F. Bovolo, & E. Santi (Eds.), Image and Signal Processing for Remote Sensing XXVI [1153308] (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 11533). SPIE-International Society for Optical Engineering. https://doi.org/10.1117/12.2566669Landsat 8 data and Breaks For Additive Season and Trend (BFAST) were used in a region of central Portugal to detect forest clear-cuts and burnt areas. A total of 79 Landsat 8 images from 2013 to 2019 were downloaded for path/row 204/032, and the NDVI was calculated. The same data processing was done for path/row 203/032 to create a denser time series in the overlapping area, which increased to 124 images. The output of the analysis is a binary map of change (i.e., forest loss) and no-change. A probabilistic accuracy assessment based on random stratified sampling was implemented with 100 random points per stratum. Each point was interpreted as being either "no-change", "clear-cut"or "burnt area"based on reference data. Furthermore, the date of change (if any) was defined. Results show an overall accuracy of 0.85±0.02 for the binary classification with omission and commission errors of class "Change"of 0.30±0.02 and 0.19±0.02. Moreover, it is estimated that 32% of the forested area in path/row 204/032 went through at least one episode of clear-cut or fire in the period analyzed. The time lag between the date of change and detection was about 2.5 months on average, which decreased to 1.5 months in the regions of the denser time series. The results are promising but BFAST is somewhat slow and hence some concerns remain about its efficiency in operation use.authorsversionpublishe

    An assessment of tropical dryland forest ecosystem biomass and climate change impacts in the Kavango-Zambezi (KAZA) region of Southern Africa

    Get PDF
    The dryland forests of the Kavango-Zambezi (KAZA) region in Southern Africa are highly susceptible to disturbances from an increase in human population, wildlife pressures and the impacts of climate change. In this environment, reliable forest extent and structure estimates are difficult to obtain because of the size and remoteness of KAZA (519,912 km²). Whilst satellite remote sensing is generally well-suited to monitoring forest characteristics, there remain large uncertainties about its application for assessing changes at a regional scale to quantify forest structure and biomass in dry forest environments. This thesis presents research that combines Synthetic Aperture Radar, multispectral satellite imagery and climatological data with an inventory from a ground survey of woodland in Botswana and Namibia in 2019. The research utilised a multi-method approach including parametric and non-parametric algorithms and change detection models to address the following objectives: (1) To assess the feasibility of using openly accessible remote sensing data to estimate the dryland forest above ground biomass (2) to quantify the detail of vegetation dynamics using extensive archives of time series satellite data; (3) to investigate the relationship between fire, soil moisture, and drought on dryland vegetation as a means of characterising spatiotemporal changes in aridity. The results establish that a combination of radar and multispectral imagery produced the best fit to the ground observations for estimating forest above ground biomass. Modelling of the time-series shows that it is possible to identify abrupt changes, longer-term trends and seasonality in forest dynamics. The time series analysis of fire shows that about 75% of the study area burned at least once within the 17-year monitoring period, with the national parks more frequently affected than other protected areas. The results presented show a significant increase in dryness over the past 2 decades, with arid and semi-arid regions encroaching at the expense of dry sub-humid, particularly in the south of the region, notably between 2011-2019

    Land Degradation Assessment with Earth Observation

    Get PDF
    This Special Issue (SI) on “Land Degradation Assessment with Earth Observation” comprises 17 original research papers with a focus on land degradation in arid, semiarid and dry-subhumid areas (i.e., desertification) in addition to temperate rangelands, grasslands, woodlands and the humid tropics. The studies cover different spatial, spectral and temporal scales and employ a wealth of different optical and radar sensors. Some studies incorporate time-series analysis techniques that assess the general trend of vegetation or the timing and duration of the reduction in biological productivity caused by land degradation. As anticipated from the latest trend in Earth Observation (EO) literature, some studies utilize the cloud-computing infrastructure of Google Earth Engine to cope with the unprecedented volume of data involved in current methodological approaches. This SI clearly demonstrates the ever-increasing relevance of EO technologies when it comes to assessing and monitoring land degradation. With the recently published IPCC Reports informing us of the severe impacts and risks to terrestrial and freshwater ecosystems and the ecosystem services they provide, the EO scientific community has a clear obligation to increase its efforts to address any remaining gaps—some of which have been identified in this SI—and produce highly accurate and relevant land-degradation assessment and monitoring tools

    Remote Sensing of Environmental Changes in Cold Regions

    Get PDF
    This Special Issue gathers papers reporting recent advances in the remote sensing of cold regions. It includes contributions presenting improvements in modeling microwave emissions from snow, assessment of satellite-based sea ice concentration products, satellite monitoring of ice jam and glacier lake outburst floods, satellite mapping of snow depth and soil freeze/thaw states, near-nadir interferometric imaging of surface water bodies, and remote sensing-based assessment of high arctic lake environment and vegetation recovery from wildfire disturbances in Alaska. A comprehensive review is presented to summarize the achievements, challenges, and opportunities of cold land remote sensing

    Improved quantification of forest cover change and implications for the carbon cycle

    Get PDF
    Changes in forest cover significantly affect the global carbon cycle, the hydrological cycle and biodiversity richness. This dissertation explores the potential of satellite-derived land cover datasets in quantifying changes in global forest cover and carbon stock. The research involved the following three components: 1) improving forest cover characterization, 2) developing advanced methods for detecting forest cover change (FCC) and 3) estimating the amount and trend of forest carbon change. The first component sought to improve global forest cover characterization through data fusion. Multiple global land cover maps have been generated, which collectively represent our current best knowledge of global land cover, but substantial discrepancies were found in their depiction of forest. I demonstrated that the extent and density of forest cover could be much better characterized by integrating existing datasets. However, these independent map products cannot be directly compared to quantify FCC, because post-classification change detection requires significant consistency in land cover definition, satellite data source and classification procedure. The yearly vegetation continuous field (VCF) product derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) provides a prototype that fulfills such requirement. The second component was intended to explore the features of this time series dataset in change analysis. A new algorithm called VCF-based Change Analysis was developed that can explicitly characterize the timing and intensity of FCC. The efficiency and robustness of this algorithm stem from two realistic assumptions—the spatial rarity and the temporal continuity of land cover change/modification. The developed method was applied to continental scales for mapping forest disturbance hotspots. The third component of the research combined MODIS-based deforestation indicators, a Landsat sample and a biomass dataset to estimate annual carbon emissions from deforestation with a regional focus on the Amazon basin. I found that deforestation emissions varied considerably not only across regions but also from year to year. Moreover, deforestation has been progressively encroaching into higher biomass lands in the Amazon interior. These observed deforestation and emission dynamics are expected to provide scientific support to policies on reducing emissions from deforestation and forest degradation (REDD+). The generated panel data are also of great value for evaluating forest protection policies

    Linkages between Atmospheric Circulation, Weather, Climate, Land Cover and Social Dynamics of the Tibetan Plateau

    Get PDF
    The Tibetan Plateau (TP) is an important landmass that plays a significant role in both regional and global climates. In recent decades, the TP has undergone significant changes due to climate and human activities. Since the 1980s anthropogenic activities, such as the stocking of livestock, land cover change, permafrost degradation, urbanization, highway construction, deforestation and desertification, and unsustainable land management practices, have greatly increased over the TP. As a result, grasslands have undergone rapid degradation and have altered the land surface which in turn has altered the exchange of heat and moisture properties between land and the atmosphere. But gaps still exist in our knowledge of land-atmosphere interactions in the TP and their impacts on weather and climate around the TP, making it difficult to understand the complete energy and water cycles over the region. Moreover, human, and ecological systems are interlinked, and the drivers of change include biophysical, economic, political, social, and cultural elements that operate at different temporal and spatial scales. Current studies do not holistically reflect the complex social-ecological dynamics of the Tibetan Plateau. To increase our understanding of this coupled human-natural system, there is a need for an integrated approach to rendering visible the deep interconnections between the biophysical and social systems of the TP. There is a need for an integrative framework to study the impacts of sedentary and individualized production systems on the health and livelihoods of local communities in the context of land degradation and climate change. To do so, there is a need to understand better the spatial variability and landscape patterns in grassland degradation across the TP. Therefore, the main goal of this dissertation is to contribute to our understanding of the changes over the land surface and how these changes impact the plateau\u27s weather, climate, and social dynamics. This dissertation is structured as three interrelated manuscripts, which each explore specific research questions relating to this larger goal. These manuscripts constitute the three primary papers of this dissertation. The first paper documents the significant association of surface energy flux with vegetation cover, as measured by satellite based AVHRR GIMMS3g normalized difference vegetation index (NDVI) data, during the early growing season of May in the western region of the Tibetan Plateau. In addition, a 1°K increase in the temperature at the 500 hPa level was observed. Based on the identified positive effects of vegetation on the temperature associated with decreased NDVI in the western region of the Tibetan Plateau, I propose a positive energy process for land-atmosphere associations. In the second paper, an increase in Landsat-derived NDVI, i.e., a greening, is identified within the TP, especially during 1990 to 2018 and 2000 to 2018 time periods. Larger median growing season NDVI change values were observed for the Southeast Tibet shrublands and meadows and Tibetan Plateau Alpine Shrublands and Meadows grassland regions, in comparison to the other three regions studied. Land degradation is prominent in the lower and intermediate hillslope positions in comparison to the higher relative topographic positions, and change is more pronounced in the eastern Southeast Tibet shrublands and meadows and Tibetan Plateau Alpine Shrublands and Meadows grasslands. Geomorphons were found to be an effective spatial unit for analysis of hillslope change patterns. Through the extensive literature review presented in third paper, this dissertation recommends using critical physical geography (CPG) to study environmental and social issues in the TP. The conceptual model proposed provides a framework for analysis of the dominant controls, feedback, and interactions between natural, human, socioeconomic, and governance activities, allowing researchers to untangle climate change, land degradation, and vulnerability in the Tibetan Plateau. CPG will further help improve our understanding of the exposure of local people to climate and socio-economic and political change and help policy makers devise appropriate strategies to combat future grassland degradation and to improve the lives and strengthen livelihoods of the inhabitants of the TP
    corecore