21,757 research outputs found

    Exploring applications of deep reinforcement learning for real-world autonomous driving systems

    Full text link
    Deep Reinforcement Learning (DRL) has become increasingly powerful in recent years, with notable achievements such as Deepmind's AlphaGo. It has been successfully deployed in commercial vehicles like Mobileye's path planning system. However, a vast majority of work on DRL is focused on toy examples in controlled synthetic car simulator environments such as TORCS and CARLA. In general, DRL is still at its infancy in terms of usability in real-world applications. Our goal in this paper is to encourage real-world deployment of DRL in various autonomous driving (AD) applications. We first provide an overview of the tasks in autonomous driving systems, reinforcement learning algorithms and applications of DRL to AD systems. We then discuss the challenges which must be addressed to enable further progress towards real-world deployment.Comment: Accepted for Oral Presentation at VISAPP 201

    Self-Supervised Flow Estimation using Geometric Regularization with Applications to Camera Image and Grid Map Sequences

    Full text link
    We present a self-supervised approach to estimate flow in camera image and top-view grid map sequences using fully convolutional neural networks in the domain of automated driving. We extend existing approaches for self-supervised optical flow estimation by adding a regularizer expressing motion consistency assuming a static environment. However, as this assumption is violated for other moving traffic participants we also estimate a mask to scale this regularization. Adding a regularization towards motion consistency improves convergence and flow estimation accuracy. Furthermore, we scale the errors due to spatial flow inconsistency by a mask that we derive from the motion mask. This improves accuracy in regions where the flow drastically changes due to a better separation between static and dynamic environment. We apply our approach to optical flow estimation from camera image sequences, validate on odometry estimation and suggest a method to iteratively increase optical flow estimation accuracy using the generated motion masks. Finally, we provide quantitative and qualitative results based on the KITTI odometry and tracking benchmark for scene flow estimation based on grid map sequences. We show that we can improve accuracy and convergence when applying motion and spatial consistency regularization.Comment: 6 pages, 5 figure

    Joint Attention in Driver-Pedestrian Interaction: from Theory to Practice

    Full text link
    Today, one of the major challenges that autonomous vehicles are facing is the ability to drive in urban environments. Such a task requires communication between autonomous vehicles and other road users in order to resolve various traffic ambiguities. The interaction between road users is a form of negotiation in which the parties involved have to share their attention regarding a common objective or a goal (e.g. crossing an intersection), and coordinate their actions in order to accomplish it. In this literature review we aim to address the interaction problem between pedestrians and drivers (or vehicles) from joint attention point of view. More specifically, we will discuss the theoretical background behind joint attention, its application to traffic interaction and practical approaches to implementing joint attention for autonomous vehicles

    Fast detection of multiple objects in traffic scenes with a common detection framework

    Full text link
    Traffic scene perception (TSP) aims to real-time extract accurate on-road environment information, which in- volves three phases: detection of objects of interest, recognition of detected objects, and tracking of objects in motion. Since recognition and tracking often rely on the results from detection, the ability to detect objects of interest effectively plays a crucial role in TSP. In this paper, we focus on three important classes of objects: traffic signs, cars, and cyclists. We propose to detect all the three important objects in a single learning based detection framework. The proposed framework consists of a dense feature extractor and detectors of three important classes. Once the dense features have been extracted, these features are shared with all detectors. The advantage of using one common framework is that the detection speed is much faster, since all dense features need only to be evaluated once in the testing phase. In contrast, most previous works have designed specific detectors using different features for each of these objects. To enhance the feature robustness to noises and image deformations, we introduce spatially pooled features as a part of aggregated channel features. In order to further improve the generalization performance, we propose an object subcategorization method as a means of capturing intra-class variation of objects. We experimentally demonstrate the effectiveness and efficiency of the proposed framework in three detection applications: traffic sign detection, car detection, and cyclist detection. The proposed framework achieves the competitive performance with state-of- the-art approaches on several benchmark datasets.Comment: Appearing in IEEE Transactions on Intelligent Transportation System

    Detecting Intentions of Vulnerable Road Users Based on Collective Intelligence

    Full text link
    Vulnerable road users (VRUs, i.e. cyclists and pedestrians) will play an important role in future traffic. To avoid accidents and achieve a highly efficient traffic flow, it is important to detect VRUs and to predict their intentions. In this article a holistic approach for detecting intentions of VRUs by cooperative methods is presented. The intention detection consists of basic movement primitive prediction, e.g. standing, moving, turning, and a forecast of the future trajectory. Vehicles equipped with sensors, data processing systems and communication abilities, referred to as intelligent vehicles, acquire and maintain a local model of their surrounding traffic environment, e.g. crossing cyclists. Heterogeneous, open sets of agents (cooperating and interacting vehicles, infrastructure, e.g. cameras and laser scanners, and VRUs equipped with smart devices and body-worn sensors) exchange information forming a multi-modal sensor system with the goal to reliably and robustly detect VRUs and their intentions under consideration of real time requirements and uncertainties. The resulting model allows to extend the perceptual horizon of the individual agent beyond their own sensory capabilities, enabling a longer forecast horizon. Concealments, implausibilities and inconsistencies are resolved by the collective intelligence of cooperating agents. Novel techniques of signal processing and modelling in combination with analytical and learning based approaches of pattern and activity recognition are used for detection, as well as intention prediction of VRUs. Cooperation, by means of probabilistic sensor and knowledge fusion, takes place on the level of perception and intention recognition. Based on the requirements of the cooperative approach for the communication a new strategy for an ad hoc network is proposed.Comment: 20 pages, published at Automatisiertes und vernetztes Fahren (AAET), Braunschweig, Germany, 201

    VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation

    Full text link
    Behavior prediction in dynamic, multi-agent systems is an important problem in the context of self-driving cars, due to the complex representations and interactions of road components, including moving agents (e.g. pedestrians and vehicles) and road context information (e.g. lanes, traffic lights). This paper introduces VectorNet, a hierarchical graph neural network that first exploits the spatial locality of individual road components represented by vectors and then models the high-order interactions among all components. In contrast to most recent approaches, which render trajectories of moving agents and road context information as bird-eye images and encode them with convolutional neural networks (ConvNets), our approach operates on a vector representation. By operating on the vectorized high definition (HD) maps and agent trajectories, we avoid lossy rendering and computationally intensive ConvNet encoding steps. To further boost VectorNet's capability in learning context features, we propose a novel auxiliary task to recover the randomly masked out map entities and agent trajectories based on their context. We evaluate VectorNet on our in-house behavior prediction benchmark and the recently released Argoverse forecasting dataset. Our method achieves on par or better performance than the competitive rendering approach on both benchmarks while saving over 70% of the model parameters with an order of magnitude reduction in FLOPs. It also outperforms the state of the art on the Argoverse dataset.Comment: CVPR 202

    Artificial Intelligence and Data Science in the Automotive Industry

    Full text link
    Data science and machine learning are the key technologies when it comes to the processes and products with automatic learning and optimization to be used in the automotive industry of the future. This article defines the terms "data science" (also referred to as "data analytics") and "machine learning" and how they are related. In addition, it defines the term "optimizing analytics" and illustrates the role of automatic optimization as a key technology in combination with data analytics. It also uses examples to explain the way that these technologies are currently being used in the automotive industry on the basis of the major subprocesses in the automotive value chain (development, procurement; logistics, production, marketing, sales and after-sales, connected customer). Since the industry is just starting to explore the broad range of potential uses for these technologies, visionary application examples are used to illustrate the revolutionary possibilities that they offer. Finally, the article demonstrates how these technologies can make the automotive industry more efficient and enhance its customer focus throughout all its operations and activities, extending from the product and its development process to the customers and their connection to the product.Comment: 22 pages, 4 figure

    Attentional Bottleneck: Towards an Interpretable Deep Driving Network

    Full text link
    Deep neural networks are a key component of behavior prediction and motion generation for self-driving cars. One of their main drawbacks is a lack of transparency: they should provide easy to interpret rationales for what triggers certain behaviors. We propose an architecture called Attentional Bottleneck with the goal of improving transparency. Our key idea is to combine visual attention, which identifies what aspects of the input the model is using, with an information bottleneck that enables the model to only use aspects of the input which are important. This not only provides sparse and interpretable attention maps (e.g. focusing only on specific vehicles in the scene), but it adds this transparency at no cost to model accuracy. In fact, we find slight improvements in accuracy when applying Attentional Bottleneck to the ChauffeurNet model, whereas we find that the accuracy deteriorates with a traditional visual attention model

    Visual Affordance and Function Understanding: A Survey

    Full text link
    Nowadays, robots are dominating the manufacturing, entertainment and healthcare industries. Robot vision aims to equip robots with the ability to discover information, understand it and interact with the environment. These capabilities require an agent to effectively understand object affordances and functionalities in complex visual domains. In this literature survey, we first focus on Visual affordances and summarize the state of the art as well as open problems and research gaps. Specifically, we discuss sub-problems such as affordance detection, categorization, segmentation and high-level reasoning. Furthermore, we cover functional scene understanding and the prevalent functional descriptors used in the literature. The survey also provides necessary background to the problem, sheds light on its significance and highlights the existing challenges for affordance and functionality learning.Comment: 26 pages, 22 image

    Is it Safe to Drive? An Overview of Factors, Challenges, and Datasets for Driveability Assessment in Autonomous Driving

    Full text link
    With recent advances in learning algorithms and hardware development, autonomous cars have shown promise when operating in structured environments under good driving conditions. However, for complex, cluttered and unseen environments with high uncertainty, autonomous driving systems still frequently demonstrate erroneous or unexpected behaviors, that could lead to catastrophic outcomes. Autonomous vehicles should ideally adapt to driving conditions; while this can be achieved through multiple routes, it would be beneficial as a first step to be able to characterize Driveability in some quantified form. To this end, this paper aims to create a framework for investigating different factors that can impact driveability. Also, one of the main mechanisms to adapt autonomous driving systems to any driving condition is to be able to learn and generalize from representative scenarios. The machine learning algorithms that currently do so learn predominantly in a supervised manner and consequently need sufficient data for robust and efficient learning. Therefore, we also perform a comparative overview of 45 public driving datasets that enable learning and publish this dataset index at https://sites.google.com/view/driveability-survey-datasets. Specifically, we categorize the datasets according to use cases, and highlight the datasets that capture complicated and hazardous driving conditions which can be better used for training robust driving models. Furthermore, by discussions of what driving scenarios are not covered by existing public datasets and what driveability factors need more investigation and data acquisition, this paper aims to encourage both targeted dataset collection and the proposal of novel driveability metrics that enhance the robustness of autonomous cars in adverse environments
    corecore