7,722 research outputs found

    Energy management in communication networks: a journey through modelling and optimization glasses

    Full text link
    The widespread proliferation of Internet and wireless applications has produced a significant increase of ICT energy footprint. As a response, in the last five years, significant efforts have been undertaken to include energy-awareness into network management. Several green networking frameworks have been proposed by carefully managing the network routing and the power state of network devices. Even though approaches proposed differ based on network technologies and sleep modes of nodes and interfaces, they all aim at tailoring the active network resources to the varying traffic needs in order to minimize energy consumption. From a modeling point of view, this has several commonalities with classical network design and routing problems, even if with different objectives and in a dynamic context. With most researchers focused on addressing the complex and crucial technological aspects of green networking schemes, there has been so far little attention on understanding the modeling similarities and differences of proposed solutions. This paper fills the gap surveying the literature with optimization modeling glasses, following a tutorial approach that guides through the different components of the models with a unified symbolism. A detailed classification of the previous work based on the modeling issues included is also proposed

    QuickCast: Fast and Efficient Inter-Datacenter Transfers using Forwarding Tree Cohorts

    Full text link
    Large inter-datacenter transfers are crucial for cloud service efficiency and are increasingly used by organizations that have dedicated wide area networks between datacenters. A recent work uses multicast forwarding trees to reduce the bandwidth needs and improve completion times of point-to-multipoint transfers. Using a single forwarding tree per transfer, however, leads to poor performance because the slowest receiver dictates the completion time for all receivers. Using multiple forwarding trees per transfer alleviates this concern--the average receiver could finish early; however, if done naively, bandwidth usage would also increase and it is apriori unclear how best to partition receivers, how to construct the multiple trees and how to determine the rate and schedule of flows on these trees. This paper presents QuickCast, a first solution to these problems. Using simulations on real-world network topologies, we see that QuickCast can speed up the average receiver's completion time by as much as 10×10\times while only using 1.04×1.04\times more bandwidth; further, the completion time for all receivers also improves by as much as 1.6×1.6\times faster at high loads.Comment: [Extended Version] Accepted for presentation in IEEE INFOCOM 2018, Honolulu, H

    Energy-Aware Weight Assignment Framework for Circuit Oriented GMPLS Networks

    Get PDF
    A branch of green networking research is consolidating. It aims at routing traffic with the goal of reducing the network energy consumption. It is usually referred to as Energy- Aware Routing. Previous works in this branch only focused on pure IP networks, e.g., assuming an Open Shortest Path First (OSPF) control plane, and best effort packet forwarding on the data plane. In this work, we consider instead Generalized Multi-Protocol Label Switching (GMPLS) backbone networks, where optical technologies allow to design "circuit switching" network management policies with strict bandwidth reservation policies. We define a simple and generic framework which generates a family of routing algorithms, based on an energy-aware weight assignment. In particular, routing weights are functions of both the energy consumption and the actual load of network devices. Using such weights, a simple minimum-cost routing allows finding the current least expensive circuit, minimising the additional energy cost. Results obtained on realistic case studies show that our weight assignment policy favours a consistent reduction of the network power consumption, without significantly affecting the network performance. Furthermore, the framework allows to trade energy efficiently and network performance, a desirable property at which ISPs are looking for. Simple and robust parameter settings allow reaching a win-win situation, with excellent performance in terms of both energy efficiency and network resource utilization
    • …
    corecore