258 research outputs found

    Tertiary Regulation of Cascaded Run-of-the-River Hydropower in the Islanded Renewable Power System Considering Multi-Timescale Dynamics

    Full text link
    To enable power supply in rural areas and to exploit clean energy, fully renewable power systems consisting of cascaded run-of-the-river hydropower and volatile energies such as pv and wind are built around the world. In islanded operation mode, the primary and secondary frequency control, i.e., hydro governors and automatic generation control (AGC), ensure the frequency stability. However, due to limited water storage capacity of run-of-the-river hydropower and river dynamics constraints, without coordination between the cascaded plants, the traditional AGC with fixed participation factors cannot fully exploit the adjustability of cascaded hydropower. When imbalances between the volatile energy and load occur, load shedding can be inevitable. To address this issue, this paper proposes a coordinated tertiary control approach by jointly considering power system dynamics and the river dynamics that couples the cascaded hydropower plants. The timescales of the power system and river dynamics are very different. To unify the multi-timescale dynamics to establish a model predictive controller that coordinates the cascaded plants, the relation between AGC parameters and turbine discharge over a time interval is approximated by a data-based second-order polynomial surrogate model. The cascaded plants are coordinated by optimising AGC participation factors in a receding-horizon manner, and load shedding is minimised. Simulation of a real-life system shows a significant improvement in the proposed method in terms of reducing load shedding.Comment: Submitted to IET Renewable Power Generation; 11 page

    Management of Islanded Operation of Microgirds

    Get PDF
    Distributed generations with continuously growing penetration levels offer potential solutions to energy security and reliability with minimum environmental impacts. Distributed Generations when connected to the area electric power systems provide numerous advantages. However, grid integration of distributed generations presents several technical challenges which has forced the systems planners and operators to account for the repercussions on the distribution feeders which are no longer passive in the presence of distributed generations. Grid integration of distributed generations requires accurate and reliable islanding detection methodology for secure system operation. Two distributed generation islanding detection methodologies are proposed in this dissertation. First, a passive islanding detection technique for grid-connected distributed generations based on parallel decision trees is proposed. The proposed approach relies on capturing the underlying signature of a wide variety of system events on a set of critical system parameters and utilizes multiple optimal decision tress in a parallel network for classification of system events. Second, a hybrid islanding detection method for grid-connected inverter based distributed generations combining decision trees and Sandia frequency shift method is also proposed. The proposed method combines passive and active islanding detection techniques to aggregate their individual advantages and reduce or eliminate their drawbacks. In smart grid paradigm, microgrids are the enabling engine for systematic integration of distributed generations with the utility grid. A systematic approach for controlled islanding of grid-connected microgrids is also proposed in this dissertation. The objective of the proposed approach is to develop an adaptive controlled islanding methodology to be implemented as a preventive control component in emergency control strategy for microgrid operations. An emergency power management strategy for microgrid autonomous operation subsequent to inadvertent islanding events is also proposed in this dissertation. The proposed approach integrates microgrid resources such as energy storage systems, demand response resources, and controllable micro-sources to layout a comprehensive power management strategy for ensuring secure and stable microgrid operation following an unplanned islanding event. In this dissertation, various case studies are presented to validate the proposed methods. The simulation results demonstrate the effectiveness of the proposed methodologies

    Droop-free Distributed Control for AC Microgrids

    Get PDF

    A Study on the Hierarchical Control Structure of the Islanded Microgrid

    Get PDF
    The microgrid is essential in promoting the power system’s resilience through its ability to host small-scale DG units. Furthermore, the microgrid can isolate itself during main grid faults and supply its demands. However, islanded operation of the microgrid is challenging due to difficulties in frequency and voltage control. In islanded mode, grid-forming units collaborate to control the frequency and voltage. A hierarchical control structure employing the droop control technique provides these control objectives in three consecutive levels: primary, secondary, and tertiary. However, challenges associated with DG units in the vicinity of distribution networks limit the effectiveness of the islanded mode of operation.In MV and LV distribution networks, the X/R ratio is low; hence, the frequency and voltage are related to the active and reactive power by line parameters. Therefore, frequency and voltage must be tuned for changes in active or reactive powers. Furthermore, the line parameters mismatch causes the voltage to be measured differently at each bus due to the different voltage drops in the lines. Hence, a trade-off between voltage regulation and reactive power-sharing is formed, which causes either circulating currents for voltage mismatch or overloading for reactive power mismatch. Finally, the economic dispatch is usually implemented in tertiary control, which takes minutes to hours. Therefore, an estimation algorithm is required for load and renewable energy quantities forecasting. Hence, prediction errors may occur that affect the stability and optimality of the control. This dissertation aims to improve the power system resilience by enhancing the operation of the islanded microgrid by addressing the above-mentioned issues. Firstly, a linear relationship described by line parameters is used in droop control at the primary control level to accurately control the frequency and voltage based on measured active and reactive power. Secondly, an optimization-based consensus secondary control is presented to manage the trade-off between voltage regulation and reactive power-sharing in the inductive grid with high line parameters mismatch. Thirdly, the economic dispatch-based secondary controller is implemented in secondary control to avoid prediction errors by depending on the measured active and reactive powers rather than the load and renewable energy generation estimation. The developed methods effectively resolve the frequency and voltage control issues in MATLAB/SIMULINK simulations

    TOWARDS OPTIMAL OPERATION AND CONTROL OF EMERGING ELECTRIC DISTRIBUTION NETWORKS

    Get PDF
    The growing integration of power-electronics converters enabled components causes low inertia in the evolving electric distribution networks, which also suffer from uncertainties due to renewable energy sources, electric demands, and anomalies caused by physical or cyber attacks, etc. These issues are addressed in this dissertation. First, a virtual synchronous generator (VSG) solution is provided for solar photovoltaics (PVs) to address the issues of low inertia and system uncertainties. Furthermore, for a campus AC microgrid, coordinated control of the PV-VSG and a combined heat and power (CHP) unit is proposed and validated. Second, for islanded AC microgrids composed of SGs and PVs, an improved three-layer predictive hierarchical power management framework is presented to provide economic operation and cyber-physical security while reducing uncertainties. This scheme providessuperior frequency regulation capability and maintains low system operating costs. Third, a decentralized strategy for coordinating adaptive controls of PVs and battery energy storage systems (BESSs) in islanded DC nanogrids is presented. Finally, for transient stability evaluation (TSE) of emerging electric distribution networks dominated by EV supercharging stations, a data-driven region of attraction (ROA) estimation approach is presented. The proposed data-driven method is more computationally efficient than traditional model-based methods, and it also allows for real-time ROA estimation for emerging electric distribution networks with complex dynamics

    Frequency and Voltage Control of Islanded Microgrids

    Get PDF
    Islanded microgrids (MGs), characterized by distributed generators, power consumers, and energy storage systems (ESSs), are designed to signi cantly enhance self-sustainability of future distribution networks and to provide energy for remote communities. In order to have a stable system, both primary and secondary frequency and voltage control of the MG are critical. From a primary control perspective, it is essential to maintain frequency and voltage in acceptable ranges. Conventional controllers are designed to regulate system frequency and voltage solely based on droop control theory, and this is mainly provided by fast-response generation units such as ESSs. Therefore, an intelligent power sharing (IPS) control is necessary to maintain frequency and voltage within acceptable ranges, and to share power not only based on generation units' droop values, but also their operating power capabilities. A mathematical model of small-perturbation stability is presented along with performance analysis. Based on analysis and simulation results, the IPS controller offers advantages such as robust performance under load and renewable energy variations, a dynamic compromise between voltage regulation and accurate reactive power sharing among generators, and enhancement of voltage regulation by an adaptive virtual impedance. From a secondary control perspective, scheduling of generation units based on conventional unit commitment (UC) remains fi xed for the duration between two dispatch intervals; however, demand or renewable generation can continuously change. This stair-pattern scheduling of generation units creates large frequency and voltage excursions at the edge of each dispatch interval. Different from the existing UC mechanisms, a hybrid mid-level the controller is proposed based on communications with a distributed primary controller. It determines optimal power of generation units between two dispatch intervals for the secondary controller while regulating frequency and voltage within desirable ranges. Through several tested scenarios on a CIGRE test system, numerical results show that the mid-level controller can regulate frequency and voltage of the islanded MG. It covers time intervals between those of primary and secondary controllers and avoids the stair-pattern generation scheduling in conventional UCs. Additionally, it reduces both operating cost of MG and degradation of fast-acting generation units' life-cycle. Subsequently, impact of communication delay on islanded MGs is studied. The delay causes local controllers to use outdated power dispatches at the proposed mid-level controller. The outdated reference power deviates frequency and voltage from their nominal values in primary control. Existing primary and secondary controllers use a communication network assuming no time delay or considering a constant time delay. A mathematical model of constant and time-varying delay in islanded MGs is tegrated into the proposed mid-level controller. This formulation addresses the impact of time delay on transient performance of these controllers. A delay-based controller is designed to mitigate frequency oscillation of islanded MGs in the presence of either small or large perturbations. Numerical results are performed on small and large perturbations to evaluate the impact of time delay on realistic 14-bus CIGRE test system
    • …
    corecore