7 research outputs found

    Heterogeneous Feature Selection With Multi-Modal Deep Neural Networks and Sparse Group LASSO

    Full text link

    Multiple Tasks are Better than One: Multi-task Learning and Feature Selection for Head Pose Estimation, Action Recognition and Event Detection

    Get PDF
    Computer vision is a field that includes methods for acquiring, processing, analyzing, and understanding images and videos and, in general, high-dimensional data from the real world in order to produce numerical or symbolic information. The classical problem in computer vision is that of determining whether or not the image or video data contains some specific object, feature, or activity. This task can normally be solved robustly and without effort by a human, but is still not satisfactorily solved in computer vision for the general case - arbitrary objects in arbitrary situations. The existing methods for dealing with this problem can at best solve it only for specific objects, such as simple geometric objects (e.g., polyhedra), human faces, printed or hand-written characters, or vehicles, and in specific situations, typically described in terms of well-defined illumination, background, and pose of the object relative to the camera. Machine Learning (ML) and Computer Vision (CV) have been put together during the development of computer vision in the past decade. Nowadays, machine learning is considered as a powerful tool to solve many computer vision problems. Multi-task learning, as one important branch of machine learning, has developed very fast during the past decade. Multi-task learning methods aim to simultaneously learn classification or regression models for a set of related tasks. This typically leads to better models as compared to a learner that does not account for task relationships. The goal of multi-task learning is to improve the performance of learning algorithms by learning classifiers for multiple tasks jointly. This works particularly well if these tasks have some commonality and are generally slightly under-sampled

    Multi-Task Sparse Discriminant Analysis (MtSDA) with Overlapping Categories

    Get PDF
    Multi-task learning aims at combining information across tasks to boost prediction performance, especially when the number of training samples is small and the number of predictors is very large. In this paper, we first extend the Sparse Discriminate Analysis (SDA) of Clemmensen et al.. We call this Multi-task Sparse Discriminate Analysis (MtSDA). MtSDA formulates multi-label prediction as a quadratic optimization problem whereas SDA obtains single labels via a nearest class mean rule. Second, we propose a class of equicorrelation matrices to use in MtSDA which includes the identity matrix. MtSDA with both matrices are compared with singletask learning (SVM and LDA+SVM) and multi-task learning (HSML). The comparisons are made on real data sets in terms of AUC and F-measure. The data results show that MtSDA outperforms other methods substantially almost all the time and in some cases MtSDA with the equicorrelation matrix substantially outperforms MtSDA with identity matrix
    corecore