3,229 research outputs found

    Incremental construction of LSTM recurrent neural network

    Get PDF
    Long Short--Term Memory (LSTM) is a recurrent neural network that uses structures called memory blocks to allow the net remember significant events distant in the past input sequence in order to solve long time lag tasks, where other RNN approaches fail. Throughout this work we have performed experiments using LSTM networks extended with growing abilities, which we call GLSTM. Four methods of training growing LSTM has been compared. These methods include cascade and fully connected hidden layers as well as two different levels of freezing previous weights in the cascade case. GLSTM has been applied to a forecasting problem in a biomedical domain, where the input/output behavior of five controllers of the Central Nervous System control has to be modelled. We have compared growing LSTM results against other neural networks approaches, and our work applying conventional LSTM to the task at hand.Postprint (published version

    Comparative Study of Neural Networks Algorithms for Cloud Computing CPU Scheduling

    Get PDF
    Cloud Computing is the most powerful computing model of our time. While the major IT providers and consumers are competing to exploit the benefits of this computing model in order to thrive their profits, most of the cloud computing platforms are still built on operating systems that uses basic CPU (Core Processing Unit) scheduling algorithms that lacks the intelligence needed for such innovative computing model. Correspdondingly, this paper presents the benefits of applying Artificial Neural Networks algorithms in regards to enhancing CPU scheduling for Cloud Computing model. Furthermore, a set of characteristics and theoretical metrics are proposed for the sake of comparing the different Artificial Neural Networks algorithms and finding the most accurate algorithm for Cloud Computing CPU Scheduling

    Deep Learning: Our Miraculous Year 1990-1991

    Full text link
    In 2020, we will celebrate that many of the basic ideas behind the deep learning revolution were published three decades ago within fewer than 12 months in our "Annus Mirabilis" or "Miraculous Year" 1990-1991 at TU Munich. Back then, few people were interested, but a quarter century later, neural networks based on these ideas were on over 3 billion devices such as smartphones, and used many billions of times per day, consuming a significant fraction of the world's compute.Comment: 37 pages, 188 references, based on work of 4 Oct 201

    Grammars and cellular automata for evolving neural networks architectures

    Get PDF
    IEEE International Conference on Systems, Man, and Cybernetics. Nashville, TN, 8-11 October 2000The class of feedforward neural networks trained with back-propagation admits a large variety of specific architectures applicable to approximation pattern tasks. Unfortunately, the architecture design is still a human expert job. In recent years, the interest to develop automatic methods to determine the architecture of the feedforward neural network has increased, most of them based on the evolutionary computation paradigm. From this approach, some perspectives can be considered: at one extreme, every connection and node of architecture can be specified in the chromosome representation using binary bits. This kind of representation scheme is called the direct encoding scheme. In order to reduce the length of the genotype and the search space, and to make the problem more scalable, indirect encoding schemes have been introduced. An indirect scheme under a constructive algorithm, on the other hand, starts with a minimal architecture and new levels, neurons and connections are added, step by step, via some sets of rules. The rules and/or some initial conditions are codified into a chromosome of a genetic algorithm. In this work, two indirect constructive encoding schemes based on grammars and cellular automata, respectively, are proposed to find the optimal architecture of a feedforward neural network

    Connectionist algorithms for identification and control - System structure and convergence analysis

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77285/1/AIAA-1997-686-380.pd
    • …
    corecore