881 research outputs found

    Evaluation with an Independent Dataset of a Deep Learning-based Left Atrium Segmentation Method

    Get PDF
    Treballs Finals de Grau d'Enginyeria Biomèdica. Facultat de Medicina i Ciències de la Salut. Universitat de Barcelona. Curs: 2020-2021. Director/s: Gaspar Delso i Roser Sala. Tutor: Manel PuigAtrial fibrillation (AF) is the most prevalent type of arrhythmia nowadays. Even though it is associated with significant morbidity and mortality, there is still a substantial lack of basic understanding of the left atrium (LA) and pulmonary veins (PVs) anatomical structure that curbs the performance of current clinical treatments for the disease. Thus, segmentation and 3D reconstruction of the LA and PVs are of crucial importance for the diagnosis and treatment of AF. In this context, cardiac 3D Late Gadolinium Magnetic Resonance Imaging (LGE-MRI) appear as a very good tool for cardiac tissue characterization and myocardial fibrosis detection. In fact, these images have been proofed as reliable predictors of catheter ablation success, which is often the chosen treatment for AF patients. Several manual and semi-automatic segmentation tools from LGE-MRI scans are currently in use, but these are very time-consuming and highly prone to errors, hence the need for an automatic segmentation approach. With the rise of deep learning and convolutional neural networks, a number of automatic schemes are being developed. In this project, we evaluate a model that has been developed at the Hospital Clínic de Barcelona for obtaining an automatic segmentation of the LA using a deep learning architecture. Concretely, we tested this model with an independent set of images from another MRI vendor, and we obtained a set of quantitative and qualitative measures to validate the results. For the pursuit of our aims, this work begins with the state-of-the-art for LA segmentation of LGEMRI scans and with a market analysis of the field. We then present our proposed solution together with the obtained results and the corresponding conclusions

    Medical Image Analysis on Left Atrial LGE MRI for Atrial Fibrillation Studies: A Review

    Full text link
    Late gadolinium enhancement magnetic resonance imaging (LGE MRI) is commonly used to visualize and quantify left atrial (LA) scars. The position and extent of scars provide important information of the pathophysiology and progression of atrial fibrillation (AF). Hence, LA scar segmentation and quantification from LGE MRI can be useful in computer-assisted diagnosis and treatment stratification of AF patients. Since manual delineation can be time-consuming and subject to intra- and inter-expert variability, automating this computing is highly desired, which nevertheless is still challenging and under-researched. This paper aims to provide a systematic review on computing methods for LA cavity, wall, scar and ablation gap segmentation and quantification from LGE MRI, and the related literature for AF studies. Specifically, we first summarize AF-related imaging techniques, particularly LGE MRI. Then, we review the methodologies of the four computing tasks in detail, and summarize the validation strategies applied in each task. Finally, the possible future developments are outlined, with a brief survey on the potential clinical applications of the aforementioned methods. The review shows that the research into this topic is still in early stages. Although several methods have been proposed, especially for LA segmentation, there is still large scope for further algorithmic developments due to performance issues related to the high variability of enhancement appearance and differences in image acquisition.Comment: 23 page

    Two-Stage Deep Learning Framework for Quality Assessment of Left Atrial Late Gadolinium Enhanced MRI Images

    Full text link
    Accurate assessment of left atrial fibrosis in patients with atrial fibrillation relies on high-quality 3D late gadolinium enhancement (LGE) MRI images. However, obtaining such images is challenging due to patient motion, changing breathing patterns, or sub-optimal choice of pulse sequence parameters. Automated assessment of LGE-MRI image diagnostic quality is clinically significant as it would enhance diagnostic accuracy, improve efficiency, ensure standardization, and contributes to better patient outcomes by providing reliable and high-quality LGE-MRI scans for fibrosis quantification and treatment planning. To address this, we propose a two-stage deep-learning approach for automated LGE-MRI image diagnostic quality assessment. The method includes a left atrium detector to focus on relevant regions and a deep network to evaluate diagnostic quality. We explore two training strategies, multi-task learning, and pretraining using contrastive learning, to overcome limited annotated data in medical imaging. Contrastive Learning result shows about 4%4\%, and 9%9\% improvement in F1-Score and Specificity compared to Multi-Task learning when there's limited data.Comment: Accepted to STACOM 2023. 11 pages, 3 figure
    corecore