64,537 research outputs found

    Recent Progresses in Deep Learning based Acoustic Models (Updated)

    Full text link
    In this paper, we summarize recent progresses made in deep learning based acoustic models and the motivation and insights behind the surveyed techniques. We first discuss acoustic models that can effectively exploit variable-length contextual information, such as recurrent neural networks (RNNs), convolutional neural networks (CNNs), and their various combination with other models. We then describe acoustic models that are optimized end-to-end with emphasis on feature representations learned jointly with rest of the system, the connectionist temporal classification (CTC) criterion, and the attention-based sequence-to-sequence model. We further illustrate robustness issues in speech recognition systems, and discuss acoustic model adaptation, speech enhancement and separation, and robust training strategies. We also cover modeling techniques that lead to more efficient decoding and discuss possible future directions in acoustic model research.Comment: This is an updated version with latest literature until ICASSP2018 of the paper: Dong Yu and Jinyu Li, "Recent Progresses in Deep Learning based Acoustic Models," vol.4, no.3, IEEE/CAA Journal of Automatica Sinica, 201

    Multi-Task Learning with High-Order Statistics for X-vector based Text-Independent Speaker Verification

    Full text link
    The x-vector based deep neural network (DNN) embedding systems have demonstrated effectiveness for text-independent speaker verification. This paper presents a multi-task learning architecture for training the speaker embedding DNN with the primary task of classifying the target speakers, and the auxiliary task of reconstructing the first- and higher-order statistics of the original input utterance. The proposed training strategy aggregates both the supervised and unsupervised learning into one framework to make the speaker embeddings more discriminative and robust. Experiments are carried out using the NIST SRE16 evaluation dataset and the VOiCES dataset. The results demonstrate that our proposed method outperforms the original x-vector approach with very low additional complexity added.Comment: 5 pages,2 figures, submitted to INTERSPEECH 201

    An Analysis of Speech Enhancement and Recognition Losses in Limited Resources Multi-talker Single Channel Audio-Visual ASR

    Full text link
    In this paper, we analyzed how audio-visual speech enhancement can help to perform the ASR task in a cocktail party scenario. Therefore we considered two simple end-to-end LSTM-based models that perform single-channel audio-visual speech enhancement and phone recognition respectively. Then, we studied how the two models interact, and how to train them jointly affects the final result. We analyzed different training strategies that reveal some interesting and unexpected behaviors. The experiments show that during optimization of the ASR task the speech enhancement capability of the model significantly decreases and vice-versa. Nevertheless the joint optimization of the two tasks shows a remarkable drop of the Phone Error Rate (PER) compared to the audio-visual baseline models trained only to perform phone recognition. We analyzed the behaviors of the proposed models by using two limited-size datasets, and in particular we used the mixed-speech versions of GRID and TCD-TIMIT

    Domain-Invariant Speaker Vector Projection by Model-Agnostic Meta-Learning

    Full text link
    Domain generalization remains a critical problem for speaker recognition, even with the state-of-the-art architectures based on deep neural nets. For example, a model trained on reading speech may largely fail when applied to scenarios of singing or movie. In this paper, we propose a domain-invariant projection to improve the generalizability of speaker vectors. This projection is a simple neural net and is trained following the Model-Agnostic Meta-Learning (MAML) principle, for which the objective is to classify speakers in one domain if it had been updated with speech data in another domain. We tested the proposed method on CNCeleb, a new dataset consisting of single-speaker multi-condition (SSMC) data. The results demonstrated that the MAML-based domain-invariant projection can produce more generalizable speaker vectors, and effectively improve the performance in unseen domains.Comment: submitted to INTERSPEECH 202

    A Purely End-to-end System for Multi-speaker Speech Recognition

    Full text link
    Recently, there has been growing interest in multi-speaker speech recognition, where the utterances of multiple speakers are recognized from their mixture. Promising techniques have been proposed for this task, but earlier works have required additional training data such as isolated source signals or senone alignments for effective learning. In this paper, we propose a new sequence-to-sequence framework to directly decode multiple label sequences from a single speech sequence by unifying source separation and speech recognition functions in an end-to-end manner. We further propose a new objective function to improve the contrast between the hidden vectors to avoid generating similar hypotheses. Experimental results show that the model is directly able to learn a mapping from a speech mixture to multiple label sequences, achieving 83.1 % relative improvement compared to a model trained without the proposed objective. Interestingly, the results are comparable to those produced by previous end-to-end works featuring explicit separation and recognition modules.Comment: ACL 201

    Leveraging Weakly Supervised Data to Improve End-to-End Speech-to-Text Translation

    Full text link
    End-to-end Speech Translation (ST) models have many potential advantages when compared to the cascade of Automatic Speech Recognition (ASR) and text Machine Translation (MT) models, including lowered inference latency and the avoidance of error compounding. However, the quality of end-to-end ST is often limited by a paucity of training data, since it is difficult to collect large parallel corpora of speech and translated transcript pairs. Previous studies have proposed the use of pre-trained components and multi-task learning in order to benefit from weakly supervised training data, such as speech-to-transcript or text-to-foreign-text pairs. In this paper, we demonstrate that using pre-trained MT or text-to-speech (TTS) synthesis models to convert weakly supervised data into speech-to-translation pairs for ST training can be more effective than multi-task learning. Furthermore, we demonstrate that a high quality end-to-end ST model can be trained using only weakly supervised datasets, and that synthetic data sourced from unlabeled monolingual text or speech can be used to improve performance. Finally, we discuss methods for avoiding overfitting to synthetic speech with a quantitative ablation study.Comment: ICASSP 201

    Multi-Task Network for Noise-Robust Keyword Spotting and Speaker Verification using CTC-based Soft VAD and Global Query Attention

    Full text link
    Keyword spotting (KWS) and speaker verification (SV) have been studied independently although it is known that acoustic and speaker domains are complementary. In this paper, we propose a multi-task network that performs KWS and SV simultaneously to fully utilize the interrelated domain information. The multi-task network tightly combines sub-networks aiming at performance improvement in challenging conditions such as noisy environments, open-vocabulary KWS, and short-duration SV, by introducing novel techniques of connectionist temporal classification (CTC)-based soft voice activity detection (VAD) and global query attention. Frame-level acoustic and speaker information is integrated with phonetically originated weights so that forms a word-level global representation. Then it is used for the aggregation of feature vectors to generate discriminative embeddings. Our proposed approach shows 4.06% and 26.71% relative improvements in equal error rate (EER) compared to the baselines for both tasks. We also present a visualization example and results of ablation experiments.Comment: Accepted to Interspeech 202

    Single-Channel Multi-talker Speech Recognition with Permutation Invariant Training

    Full text link
    Although great progresses have been made in automatic speech recognition (ASR), significant performance degradation is still observed when recognizing multi-talker mixed speech. In this paper, we propose and evaluate several architectures to address this problem under the assumption that only a single channel of mixed signal is available. Our technique extends permutation invariant training (PIT) by introducing the front-end feature separation module with the minimum mean square error (MSE) criterion and the back-end recognition module with the minimum cross entropy (CE) criterion. More specifically, during training we compute the average MSE or CE over the whole utterance for each possible utterance-level output-target assignment, pick the one with the minimum MSE or CE, and optimize for that assignment. This strategy elegantly solves the label permutation problem observed in the deep learning based multi-talker mixed speech separation and recognition systems. The proposed architectures are evaluated and compared on an artificially mixed AMI dataset with both two- and three-talker mixed speech. The experimental results indicate that our proposed architectures can cut the word error rate (WER) by 45.0% and 25.0% relatively against the state-of-the-art single-talker speech recognition system across all speakers when their energies are comparable, for two- and three-talker mixed speech, respectively. To our knowledge, this is the first work on the multi-talker mixed speech recognition on the challenging speaker-independent spontaneous large vocabulary continuous speech task.Comment: 11 pages, 6 figures, Submitted to IEEE/ACM Transactions on Audio, Speech and Language Processing. arXiv admin note: text overlap with arXiv:1704.0198

    Adversarial Speaker Verification

    Full text link
    The use of deep networks to extract embeddings for speaker recognition has proven successfully. However, such embeddings are susceptible to performance degradation due to the mismatches among the training, enrollment, and test conditions. In this work, we propose an adversarial speaker verification (ASV) scheme to learn the condition-invariant deep embedding via adversarial multi-task training. In ASV, a speaker classification network and a condition identification network are jointly optimized to minimize the speaker classification loss and simultaneously mini-maximize the condition loss. The target labels of the condition network can be categorical (environment types) and continuous (SNR values). We further propose multi-factorial ASV to simultaneously suppress multiple factors that constitute the condition variability. Evaluated on a Microsoft Cortana text-dependent speaker verification task, the ASV achieves 8.8% and 14.5% relative improvements in equal error rates (EER) for known and unknown conditions, respectively.Comment: 5 pages, 1 figure, ICASSP 201

    Machine Speech Chain with One-shot Speaker Adaptation

    Full text link
    In previous work, we developed a closed-loop speech chain model based on deep learning, in which the architecture enabled the automatic speech recognition (ASR) and text-to-speech synthesis (TTS) components to mutually improve their performance. This was accomplished by the two parts teaching each other using both labeled and unlabeled data. This approach could significantly improve model performance within a single-speaker speech dataset, but only a slight increase could be gained in multi-speaker tasks. Furthermore, the model is still unable to handle unseen speakers. In this paper, we present a new speech chain mechanism by integrating a speaker recognition model inside the loop. We also propose extending the capability of TTS to handle unseen speakers by implementing one-shot speaker adaptation. This enables TTS to mimic voice characteristics from one speaker to another with only a one-shot speaker sample, even from a text without any speaker information. In the speech chain loop mechanism, ASR also benefits from the ability to further learn an arbitrary speaker's characteristics from the generated speech waveform, resulting in a significant improvement in the recognition rate
    • …
    corecore