5,380 research outputs found

    Data-Driven Grasp Synthesis - A Survey

    Full text link
    We review the work on data-driven grasp synthesis and the methodologies for sampling and ranking candidate grasps. We divide the approaches into three groups based on whether they synthesize grasps for known, familiar or unknown objects. This structure allows us to identify common object representations and perceptual processes that facilitate the employed data-driven grasp synthesis technique. In the case of known objects, we concentrate on the approaches that are based on object recognition and pose estimation. In the case of familiar objects, the techniques use some form of a similarity matching to a set of previously encountered objects. Finally for the approaches dealing with unknown objects, the core part is the extraction of specific features that are indicative of good grasps. Our survey provides an overview of the different methodologies and discusses open problems in the area of robot grasping. We also draw a parallel to the classical approaches that rely on analytic formulations.Comment: 20 pages, 30 Figures, submitted to IEEE Transactions on Robotic

    Learning multi-stage tasks with one demonstration via self-replay

    Get PDF
    In this work, we introduce a novel method to learn everyday-like multistage tasks from a single human demonstration, without requiring any prior object knowledge. Inspired by the recent Coarse-to-Fine Imitation Learning method, we model imitation learning as a learned object reaching phase followed by an openloop replay of the demonstrator’s actions. We build upon this for multi-stage tasks where, following the human demonstration, the robot can autonomously collect image data for the entire multi-stage task, by reaching the next object in the sequence and then replaying the demonstration, and then repeating in a loop for all stages of the task. We evaluate with real-world experiments on a set of everydaylike multi-stage tasks, which we show that our method can solve from a single demonstration. Videos and supplementary material can be found at this webpage

    SHAIL: Safety-Aware Hierarchical Adversarial Imitation Learning for Autonomous Driving in Urban Environments

    Full text link
    Designing a safe and human-like decision-making system for an autonomous vehicle is a challenging task. Generative imitation learning is one possible approach for automating policy-building by leveraging both real-world and simulated decisions. Previous work that applies generative imitation learning to autonomous driving policies focuses on learning a low-level controller for simple settings. However, to scale to complex settings, many autonomous driving systems combine fixed, safe, optimization-based low-level controllers with high-level decision-making logic that selects the appropriate task and associated controller. In this paper, we attempt to bridge this gap in complexity by employing Safety-Aware Hierarchical Adversarial Imitation Learning (SHAIL), a method for learning a high-level policy that selects from a set of low-level controller instances in a way that imitates low-level driving data on-policy. We introduce an urban roundabout simulator that controls non-ego vehicles using real data from the Interaction dataset. We then show empirically that our approach can produce better behavior than previous approaches in driver imitation which have difficulty scaling to complex environments. Our implementation is available at https://github.com/sisl/InteractionImitation
    • …
    corecore