36,278 research outputs found

    Multi-Task Curriculum Framework for Open-Set Semi-Supervised Learning

    Full text link
    Semi-supervised learning (SSL) has been proposed to leverage unlabeled data for training powerful models when only limited labeled data is available. While existing SSL methods assume that samples in the labeled and unlabeled data share the classes of their samples, we address a more complex novel scenario named open-set SSL, where out-of-distribution (OOD) samples are contained in unlabeled data. Instead of training an OOD detector and SSL separately, we propose a multi-task curriculum learning framework. First, to detect the OOD samples in unlabeled data, we estimate the probability of the sample belonging to OOD. We use a joint optimization framework, which updates the network parameters and the OOD score alternately. Simultaneously, to achieve high performance on the classification of in-distribution (ID) data, we select ID samples in unlabeled data having small OOD scores, and use these data with labeled data for training the deep neural networks to classify ID samples in a semi-supervised manner. We conduct several experiments, and our method achieves state-of-the-art results by successfully eliminating the effect of OOD samples.Comment: ECCV 202

    Recent Advances in Zero-shot Recognition

    Full text link
    With the recent renaissance of deep convolution neural networks, encouraging breakthroughs have been achieved on the supervised recognition tasks, where each class has sufficient training data and fully annotated training data. However, to scale the recognition to a large number of classes with few or now training samples for each class remains an unsolved problem. One approach to scaling up the recognition is to develop models capable of recognizing unseen categories without any training instances, or zero-shot recognition/ learning. This article provides a comprehensive review of existing zero-shot recognition techniques covering various aspects ranging from representations of models, and from datasets and evaluation settings. We also overview related recognition tasks including one-shot and open set recognition which can be used as natural extensions of zero-shot recognition when limited number of class samples become available or when zero-shot recognition is implemented in a real-world setting. Importantly, we highlight the limitations of existing approaches and point out future research directions in this existing new research area.Comment: accepted by IEEE Signal Processing Magazin

    Unsupervised Person Re-identification: Clustering and Fine-tuning

    Full text link
    The superiority of deeply learned pedestrian representations has been reported in very recent literature of person re-identification (re-ID). In this paper, we consider the more pragmatic issue of learning a deep feature with no or only a few labels. We propose a progressive unsupervised learning (PUL) method to transfer pretrained deep representations to unseen domains. Our method is easy to implement and can be viewed as an effective baseline for unsupervised re-ID feature learning. Specifically, PUL iterates between 1) pedestrian clustering and 2) fine-tuning of the convolutional neural network (CNN) to improve the original model trained on the irrelevant labeled dataset. Since the clustering results can be very noisy, we add a selection operation between the clustering and fine-tuning. At the beginning when the model is weak, CNN is fine-tuned on a small amount of reliable examples which locate near to cluster centroids in the feature space. As the model becomes stronger in subsequent iterations, more images are being adaptively selected as CNN training samples. Progressively, pedestrian clustering and the CNN model are improved simultaneously until algorithm convergence. This process is naturally formulated as self-paced learning. We then point out promising directions that may lead to further improvement. Extensive experiments on three large-scale re-ID datasets demonstrate that PUL outputs discriminative features that improve the re-ID accuracy.Comment: Add more results, parameter analysis and comparison

    Webly Supervised Joint Embedding for Cross-Modal Image-Text Retrieval

    Full text link
    Cross-modal retrieval between visual data and natural language description remains a long-standing challenge in multimedia. While recent image-text retrieval methods offer great promise by learning deep representations aligned across modalities, most of these methods are plagued by the issue of training with small-scale datasets covering a limited number of images with ground-truth sentences. Moreover, it is extremely expensive to create a larger dataset by annotating millions of images with sentences and may lead to a biased model. Inspired by the recent success of webly supervised learning in deep neural networks, we capitalize on readily-available web images with noisy annotations to learn robust image-text joint representation. Specifically, our main idea is to leverage web images and corresponding tags, along with fully annotated datasets, in training for learning the visual-semantic joint embedding. We propose a two-stage approach for the task that can augment a typical supervised pair-wise ranking loss based formulation with weakly-annotated web images to learn a more robust visual-semantic embedding. Experiments on two standard benchmark datasets demonstrate that our method achieves a significant performance gain in image-text retrieval compared to state-of-the-art approaches.Comment: ACM Multimedia 201

    Dynamic Curriculum Learning for Imbalanced Data Classification

    Full text link
    Human attribute analysis is a challenging task in the field of computer vision, since the data is largely imbalance-distributed. Common techniques such as re-sampling and cost-sensitive learning require prior-knowledge to train the system. To address this problem, we propose a unified framework called Dynamic Curriculum Learning (DCL) to online adaptively adjust the sampling strategy and loss learning in single batch, which resulting in better generalization and discrimination. Inspired by the curriculum learning, DCL consists of two level curriculum schedulers: (1) sampling scheduler not only manages the data distribution from imbalanced to balanced but also from easy to hard; (2) loss scheduler controls the learning importance between classification and metric learning loss. Learning from these two schedulers, we demonstrate our DCL framework with the new state-of-the-art performance on the widely used face attribute dataset CelebA and pedestrian attribute dataset RAP

    Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training

    Full text link
    Recent deep networks achieved state of the art performance on a variety of semantic segmentation tasks. Despite such progress, these models often face challenges in real world `wild tasks' where large difference between labeled training/source data and unseen test/target data exists. In particular, such difference is often referred to as `domain gap', and could cause significantly decreased performance which cannot be easily remedied by further increasing the representation power. Unsupervised domain adaptation (UDA) seeks to overcome such problem without target domain labels. In this paper, we propose a novel UDA framework based on an iterative self-training procedure, where the problem is formulated as latent variable loss minimization, and can be solved by alternatively generating pseudo labels on target data and re-training the model with these labels. On top of self-training, we also propose a novel class-balanced self-training framework to avoid the gradual dominance of large classes on pseudo-label generation, and introduce spatial priors to refine generated labels. Comprehensive experiments show that the proposed methods achieve state of the art semantic segmentation performance under multiple major UDA settings.Comment: Accepted to ECCV 201

    Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation

    Full text link
    Unsupervised domain adaptation (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain. Prior UDA methods typically require to access the source data when learning to adapt the model, making them risky and inefficient for decentralized private data. This work tackles a practical setting where only a trained source model is available and investigates how we can effectively utilize such a model without source data to solve UDA problems. We propose a simple yet generic representation learning framework, named \emph{Source HypOthesis Transfer} (SHOT). SHOT freezes the classifier module (hypothesis) of the source model and learns the target-specific feature extraction module by exploiting both information maximization and self-supervised pseudo-labeling to implicitly align representations from the target domains to the source hypothesis. To verify its versatility, we evaluate SHOT in a variety of adaptation cases including closed-set, partial-set, and open-set domain adaptation. Experiments indicate that SHOT yields state-of-the-art results among multiple domain adaptation benchmarks.Comment: ICML2020. Fix the typos for Digits. Code is available at https://github.com/tim-learn/SHO

    Adversarial Generation of Training Examples: Applications to Moving Vehicle License Plate Recognition

    Full text link
    Generative Adversarial Networks (GAN) have attracted much research attention recently, leading to impressive results for natural image generation. However, to date little success was observed in using GAN generated images for improving classification tasks. Here we attempt to explore, in the context of car license plate recognition, whether it is possible to generate synthetic training data using GAN to improve recognition accuracy. With a carefully-designed pipeline, we show that the answer is affirmative. First, a large-scale image set is generated using the generator of GAN, without manual annotation. Then, these images are fed to a deep convolutional neural network (DCNN) followed by a bidirectional recurrent neural network (BRNN) with long short-term memory (LSTM), which performs the feature learning and sequence labelling. Finally, the pre-trained model is fine-tuned on real images. Our experimental results on a few data sets demonstrate the effectiveness of using GAN images: an improvement of 7.5% over a strong baseline with moderate-sized real data being available. We show that the proposed framework achieves competitive recognition accuracy on challenging test datasets. We also leverage the depthwise separate convolution to construct a lightweight convolutional RNN, which is about half size and 2x faster on CPU. Combining this framework and the proposed pipeline, we make progress in performing accurate recognition on mobile and embedded devices

    Weakly Supervised Adversarial Domain Adaptation for Semantic Segmentation in Urban Scenes

    Full text link
    Semantic segmentation, a pixel-level vision task, is developed rapidly by using convolutional neural networks (CNNs). Training CNNs requires a large amount of labeled data, but manually annotating data is difficult. For emancipating manpower, in recent years, some synthetic datasets are released. However, they are still different from real scenes, which causes that training a model on the synthetic data (source domain) cannot achieve a good performance on real urban scenes (target domain). In this paper, we propose a weakly supervised adversarial domain adaptation to improve the segmentation performance from synthetic data to real scenes, which consists of three deep neural networks. To be specific, a detection and segmentation ("DS" for short) model focuses on detecting objects and predicting segmentation map; a pixel-level domain classifier ("PDC" for short) tries to distinguish the image features from which domains; an object-level domain classifier ("ODC" for short) discriminates the objects from which domains and predicts the objects classes. PDC and ODC are treated as the discriminators, and DS is considered as the generator. By adversarial learning, DS is supposed to learn domain-invariant features. In experiments, our proposed method yields the new record of mIoU metric in the same problem.Comment: To appear at TI

    Adaptive Semantic Segmentation with a Strategic Curriculum of Proxy Labels

    Full text link
    Training deep networks for semantic segmentation requires annotation of large amounts of data, which can be time-consuming and expensive. Unfortunately, these trained networks still generalize poorly when tested in domains not consistent with the training data. In this paper, we show that by carefully presenting a mixture of labeled source domain and proxy-labeled target domain data to a network, we can achieve state-of-the-art unsupervised domain adaptation results. With our design, the network progressively learns features specific to the target domain using annotation from only the source domain. We generate proxy labels for the target domain using the network's own predictions. Our architecture then allows selective mining of easy samples from this set of proxy labels, and hard samples from the annotated source domain. We conduct a series of experiments with the GTA5, Cityscapes and BDD100k datasets on synthetic-to-real domain adaptation and geographic domain adaptation, showing the advantages of our method over baselines and existing approaches
    • …
    corecore