2,732 research outputs found

    The Impact of Flow in an EEG-based Brain Computer Interface

    Get PDF
    Major issues in Brain Computer Interfaces (BCIs) include low usability and poor user performance. This paper tackles them by ensuring the users to be in a state of immersion, control and motivation, called state of flow. Indeed, in various disciplines, being in the state of flow was shown to improve performances and learning. Hence, we intended to draw BCI users in a flow state to improve both their subjective experience and their performances. In a Motor Imagery BCI game, we manipulated flow in two ways: 1) by adapting the task difficulty and 2) by using background music. Results showed that the difficulty adaptation induced a higher flow state, however music had no effect. There was a positive correlation between subjective flow scores and offline performance, although the flow factors had no effect (adaptation) or negative effect (music) on online performance. Overall, favouring the flow state seems a promising approach for enhancing users' satisfaction, although its complexity requires more thorough investigations

    Games and Brain-Computer Interfaces: The State of the Art

    Get PDF
    BCI gaming is a very young field; most games are proof-of-concepts. Work that compares BCIs in a game environments with traditional BCIs indicates no negative effects, or even a positive effect of the rich visual environments on the performance. The low transfer-rate of current games poses a problem for control of a game. This is often solved by changing the goal of the game. Multi-modal input with BCI forms an promising solution, as does assigning more meaningful functionality to BCI control

    Human-Computer Interaction for BCI Games: Usability and User Experience

    Get PDF
    Brain-computer interfaces (BCI) come with a lot of issues, such as delays, bad recognition, long training times, and cumbersome hardware. Gamers are a large potential target group for this new interaction modality, but why would healthy subjects want to use it? BCI provides a combination of information and features that no other input modality can offer. But for general acceptance of this technology, usability and user experience will need to be taken into account when designing such systems. This paper discusses the consequences of applying knowledge from Human-Computer Interaction (HCI) to the design of BCI for games. The integration of HCI with BCI is illustrated by research examples and showcases, intended to take this promising technology out of the lab. Future research needs to move beyond feasibility tests, to prove that BCI is also applicable in realistic, real-world settings

    Bacteria Hunt: A multimodal, multiparadigm BCI game

    Get PDF
    Brain-Computer Interfaces (BCIs) allow users to control applications by brain activity. Among their possible applications for non-disabled people, games are promising candidates. BCIs can enrich game play by the mental and affective state information they contain. During the eNTERFACE’09 workshop we developed the Bacteria Hunt game which can be played by keyboard and BCI, using SSVEP and relative alpha power. We conducted experiments in order to investigate what difference positive vs. negative neurofeedback would have on subjects’ relaxation states and how well the different BCI paradigms can be used together. We observed no significant difference in mean alpha band power, thus relaxation, and in user experience between the games applying positive and negative feedback. We also found that alpha power before SSVEP stimulation was significantly higher than alpha power during SSVEP stimulation indicating that there is some interference between the two BCI paradigms

    Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges

    Get PDF
    In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices

    Development of an Electroencephalography-Based Brain-Computer Interface Supporting Two-Dimensional Cursor Control

    Get PDF
    This study aims to explore whether human intentions to move or cease to move right and left hands can be decoded from spatiotemporal features in non-invasive electroencephalography (EEG) in order to control a discrete two-dimensional cursor movement for a potential multi-dimensional Brain-Computer interface (BCI). Five naïve subjects performed either sustaining or stopping a motor task with time locking to a predefined time window by using motor execution with physical movement or motor imagery. Spatial filtering, temporal filtering, feature selection and classification methods were explored. The performance of the proposed BCI was evaluated by both offline classification and online two-dimensional cursor control. Event-related desynchronization (ERD) and post-movement event-related synchronization (ERS) were observed on the contralateral hemisphere to the hand moved for both motor execution and motor imagery. Feature analysis showed that EEG beta band activity in the contralateral hemisphere over the motor cortex provided the best detection of either sustained or ceased movement of the right or left hand. The offline classification of four motor tasks (sustain or cease to move right or left hand) provided 10-fold cross-validation accuracy as high as 88% for motor execution and 73% for motor imagery. The subjects participating in experiments with physical movement were able to complete the online game with motor execution at the average accuracy of 85.5±4.65%; Subjects participating in motor imagery study also completed the game successfully. The proposed BCI provides a new practical multi-dimensional method by noninvasive EEG signal associated with human natural behavior, which does not need long-term training
    corecore