18,264 research outputs found

    PPF - A Parallel Particle Filtering Library

    Full text link
    We present the parallel particle filtering (PPF) software library, which enables hybrid shared-memory/distributed-memory parallelization of particle filtering (PF) algorithms combining the Message Passing Interface (MPI) with multithreading for multi-level parallelism. The library is implemented in Java and relies on OpenMPI's Java bindings for inter-process communication. It includes dynamic load balancing, multi-thread balancing, and several algorithmic improvements for PF, such as input-space domain decomposition. The PPF library hides the difficulties of efficient parallel programming of PF algorithms and provides application developers with the necessary tools for parallel implementation of PF methods. We demonstrate the capabilities of the PPF library using two distributed PF algorithms in two scenarios with different numbers of particles. The PPF library runs a 38 million particle problem, corresponding to more than 1.86 GB of particle data, on 192 cores with 67% parallel efficiency. To the best of our knowledge, the PPF library is the first open-source software that offers a parallel framework for PF applications.Comment: 8 pages, 8 figures; will appear in the proceedings of the IET Data Fusion & Target Tracking Conference 201

    Path sampling for particle filters with application to multi-target tracking

    Full text link
    In recent work (arXiv:1006.3100v1), we have presented a novel approach for improving particle filters for multi-target tracking. The suggested approach was based on drift homotopy for stochastic differential equations. Drift homotopy was used to design a Markov Chain Monte Carlo step which is appended to the particle filter and aims to bring the particle filter samples closer to the observations. In the current work, we present an alternative way to append a Markov Chain Monte Carlo step to a particle filter to bring the particle filter samples closer to the observations. Both current and previous approaches stem from the general formulation of the filtering problem. We have used the currently proposed approach on the problem of multi-target tracking for both linear and nonlinear observation models. The numerical results show that the suggested approach can improve significantly the performance of a particle filter.Comment: Minor corrections, 23 pages, 8 figures. This is a companion paper to arXiv:1006.3100v

    Interacting Multiple Model-Feedback Particle Filter for Stochastic Hybrid Systems

    Full text link
    In this paper, a novel feedback control-based particle filter algorithm for the continuous-time stochastic hybrid system estimation problem is presented. This particle filter is referred to as the interacting multiple model-feedback particle filter (IMM-FPF), and is based on the recently developed feedback particle filter. The IMM-FPF is comprised of a series of parallel FPFs, one for each discrete mode, and an exact filter recursion for the mode association probability. The proposed IMM-FPF represents a generalization of the Kalmanfilter based IMM algorithm to the general nonlinear filtering problem. The remarkable conclusion of this paper is that the IMM-FPF algorithm retains the innovation error-based feedback structure even for the nonlinear problem. The interaction/merging process is also handled via a control-based approach. The theoretical results are illustrated with the aid of a numerical example problem for a maneuvering target tracking application

    Information theoretic approach to robust multi-Bernoulli sensor control

    Full text link
    A novel sensor control solution is presented, formulated within a Multi-Bernoulli-based multi-target tracking framework. The proposed method is especially designed for the general multi-target tracking case, where no prior knowledge of the clutter distribution or the probability of detection profile are available. In an information theoretic approach, our method makes use of R\`{e}nyi divergence as the reward function to be maximized for finding the optimal sensor control command at each step. We devise a Monte Carlo sampling method for computation of the reward. Simulation results demonstrate successful performance of the proposed method in a challenging scenario involving five targets maneuvering in a relatively uncertain space with unknown distance-dependent clutter rate and probability of detection

    Two-layer particle filter for multiple target detection and tracking

    Get PDF
    This paper deals with the detection and tracking of an unknown number of targets using a Bayesian hierarchical model with target labels. To approximate the posterior probability density function, we develop a two-layer particle filter. One deals with track initiation, and the other with track maintenance. In addition, the parallel partition method is proposed to sample the states of the surviving targets

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe
    corecore