29,670 research outputs found

    Ultra Low Carbon Vehicles: New Parameters for Automotive Design

    Get PDF
    As the influence of vehicle emissions on our environment has become better understood, the UK government has recently placed urgent emphasis on the implementation of low carbon technologies in the automotive industry through: the UK Low Carbon Industrial Strategy. The overall objective is to offer big incentives to consumers and support for the development of infrastructure and engineering solutions. This scheme however does not consider how the development of functional and experiential user value might drive consumer demand, contributing to the adoption of low carbon vehicles (LCVs) in the mass market. With the emergence of the North East of England as the UK’s first specialised region for the development of ultra-low carbon vehicles (ULCVs), ONE North East, as a development agency for the region's economic and business development, and Northumbria University Ideas-lab have supported a project to facilitate innovation through the collaboration of technology, research and development (R&D) and business. The High Value Low Carbon (HVLC) project aims to envisage new user value made possible by the integration of low carbon vehicle platforms with new process and network technologies. The HVLC consortium represents vehicle manufacturers and their suppliers as well as technology based companies and through an ongoing process of design concept generation the project offers a hub for innovation led enterprise. Whilst new technological developments in areas such as power generation, nano materials, hydrogen fuel cells, printed electronics and networked communications will all impact on future automotive design, the mass adoption of low carbon technologies represents a paradigm shift for the motorist. This paper aims to describe how the mapping of new parameters will lead to new transport scenarios that will create the space for new collaborative research on user experiences supported by innovative technologies and related services

    Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems

    Get PDF
    Big data analytics is a virtually new term in power system terminology. This concept delves into the way a massive volume of data is acquired, processed, analyzed to extract insight from available data. In particular, big data analytics alludes to applications of artificial intelligence, machine learning techniques, data mining techniques, time-series forecasting methods. Decision-makers in power systems have been long plagued by incapability and weakness of classical methods in dealing with large-scale real practical cases due to the existence of thousands or millions of variables, being time-consuming, the requirement of a high computation burden, divergence of results, unjustifiable errors, and poor accuracy of the model. Big data analytics is an ongoing topic, which pinpoints how to extract insights from these large data sets. The extant article has enumerated the applications of big data analytics in future power systems through several layers from grid-scale to local-scale. Big data analytics has many applications in the areas of smart grid implementation, electricity markets, execution of collaborative operation schemes, enhancement of microgrid operation autonomy, management of electric vehicle operations in smart grids, active distribution network control, district hub system management, multi-agent energy systems, electricity theft detection, stability and security assessment by PMUs, and better exploitation of renewable energy sources. The employment of big data analytics entails some prerequisites, such as the proliferation of IoT-enabled devices, easily-accessible cloud space, blockchain, etc. This paper has comprehensively conducted an extensive review of the applications of big data analytics along with the prevailing challenges and solutions

    Recent advances in industrial wireless sensor networks towards efficient management in IoT

    Get PDF
    With the accelerated development of Internet-of- Things (IoT), wireless sensor networks (WSN) are gaining importance in the continued advancement of information and communication technologies, and have been connected and integrated with Internet in vast industrial applications. However, given the fact that most wireless sensor devices are resource constrained and operate on batteries, the communication overhead and power consumption are therefore important issues for wireless sensor networks design. In order to efficiently manage these wireless sensor devices in a unified manner, the industrial authorities should be able to provide a network infrastructure supporting various WSN applications and services that facilitate the management of sensor-equipped real-world entities. This paper presents an overview of industrial ecosystem, technical architecture, industrial device management standards and our latest research activity in developing a WSN management system. The key approach to enable efficient and reliable management of WSN within such an infrastructure is a cross layer design of lightweight and cloud-based RESTful web service
    • …
    corecore