1,980 research outputs found

    The Parametric Aircraft Noise Analysis Module - status overview and recent applications

    Get PDF
    The German Aerospace Center (DLR) is investigating aircraft noise prediction and noise reduction capabilities. The Parametric Aircraft Noise Analysis Module (PANAM) is a fast prediction tool by the DLR Institute of Aerodynamics and Flow Technology to address overall aircraft noise. It was initially developed to (1) enable comparative design studies with respect to overall aircraft ground noise and to (2) indentify promising low-noise technologies at early aircraft design stages. A brief survey of available and established fast noise prediction codes is provided in order to rank and classify PANAM among existing tools. PANAM predicts aircraft noise generated during arbitrary 3D approach and take-off flight procedures. Noise generation of an operating aircraft is determined by its design, the relative observer position, configuration settings, and operating condition along the flight path. Feasible noise analysis requires a detailed simulation of all these dominating effects. Major aircraft noise components are simulated with individual models and interactions are neglected. Each component is simulated with a separate semi-empirical and parametric noise source model. These models capture major physical effects and correlations yet allow for fast and accurate noise prediction. Sound propagation and convection effects are applied to the emitting noise source in order to transfer static emission into aircraft ground noise impact with respect to the actual flight operating conditions. Recent developments and process interfaces are presented and prediction results are compared with experimental data recorded during DLR flyover noise campaigns with an Airbus A319 (2006), a VFW-614 (2009), and a Boeing B737-700 (2010). Overall, dominating airframe and engine noise sources are adequately modeled and overall aircraft ground noise levels can sufficiently be predicted. The paper concludes with a brief overview on current code applications towards selected noise reduction technologies

    Control of aircraft in the terminal manoeuvring area using parallelised sequential Monte Carlo

    Get PDF
    This paper reports on the use of a parallelised Model Predictive Control, Sequential Monte Carlo algorithm for solving the problem of conflict resolution and aircraft trajectory control in air traffic management specifically around the terminal manoeuvring area of an airport. The target problem is nonlinear, highly constrained, non-convex and uses a single decision-maker with multiple aircraft. The implementation includes a spatio-temporal wind model and rolling window simulations for realistic ongoing scenarios. The method is capable of handling arriving and departing aircraft simultaneously including some with very low fuel remaining. A novel flow field is proposed to smooth the approach trajectories for arriving aircraft and all trajectories are planned in three dimensions. Massive parallelisation of the algorithm allows solution speeds to approach those required for real-time use.This work was supported by EPSRC (Engineering and Physical Sciences Research Council - UK) Grant No. EP/G066477/1AIAA Conference on Guidance, Navigation and Control 201

    Automated ATM system enabling 4DT-based operations

    Get PDF
    As part of the current initiatives aimed at enhancing safety, efficiency and environmental sustainability of aviation, a significant improvement in the efficiency of aircraft operations is currently pursued. Innovative Communication, Navigation, Surveillance and Air Traffic Management (CNS/ATM) technologies and operational concepts are being developed to achieve the ambitious goals for efficiency and environmental sustainability set by national and international aviation organizations. These technological and operational innovations will be ultimately enabled by the introduction of novel CNS/ATM and Avionics (CNS+A) systems, featuring higher levels of automation. A core feature of such systems consists in the real-time multi-objective optimization of flight trajectories, incorporating all the operational, economic and environmental aspects of the aircraft mission. This article describes the conceptual design of an innovative ground-based Air Traffic Management (ATM) system featuring automated 4-Dimensional Trajectory (4DT) functionalities. The 4DT planning capability is based on the multi-objective optimization of 4DT intents. After summarizing the concept of operations, the top-level system architecture and the key 4DT optimization modules, we discuss the segmentation algorithm to obtain flyable and concisely described 4DT. Simulation case studies in representative scenarios show that the adopted algorithms generate solutions consistently within the timeframe of online tactical rerouting tasks, meeting the set design requirements

    Multi-objective optimisation of aircraft flight trajectories in the ATM and avionics context

    Get PDF
    The continuous increase of air transport demand worldwide and the push for a more economically viable and environmentally sustainable aviation are driving significant evolutions of aircraft, airspace and airport systems design and operations. Although extensive research has been performed on the optimisation of aircraft trajectories and very efficient algorithms were widely adopted for the optimisation of vertical flight profiles, it is only in the last few years that higher levels of automation were proposed for integrated flight planning and re-routing functionalities of innovative Communication Navigation and Surveillance/Air Traffic Management (CNS/ATM) and Avionics (CNS+A) systems. In this context, the implementation of additional environmental targets and of multiple operational constraints introduces the need to efficiently deal with multiple objectives as part of the trajectory optimisation algorithm. This article provides a comprehensive review of Multi-Objective Trajectory Optimisation (MOTO) techniques for transport aircraft flight operations, with a special focus on the recent advances introduced in the CNS+A research context. In the first section, a brief introduction is given, together with an overview of the main international research initiatives where this topic has been studied, and the problem statement is provided. The second section introduces the mathematical formulation and the third section reviews the numerical solution techniques, including discretisation and optimisation methods for the specific problem formulated. The fourth section summarises the strategies to articulate the preferences and to select optimal trajectories when multiple conflicting objectives are introduced. The fifth section introduces a number of models defining the optimality criteria and constraints typically adopted in MOTO studies, including fuel consumption, air pollutant and noise emissions, operational costs, condensation trails, airspace and airport operations

    Cost-based linear holding practice and collaborative air traffic flow management under trajectory based operations

    Get PDF
    The current air transportation system is reaching the capacity limit in many countries/regions across the world. It tends to be less efficient or even incapable sometimes to deal with the enormous air traffic demand that continues growing year by year. This has been evidenced by the record-breaking flight delays reported in various places in recent years, which, have resulted in notable economical loses. To mitigate this imbalance between demand and capacity, air traffic flow management (ATFM) is usually one of the most useful options. It regulates traffic flows according to air traffic control capacity while preserving safety and efficiency of flights. ATFM initiatives can be considered well in advance of the flight execution - more than one year earlier - based on air traffic forecasts and capacity plans, and continue in effect, with information updated, to eventually the day of operation. This long effective period will inevitably allow substantial collaboration among different stakeholders, including the ATFM authority, airspace users (AUs), air navigation service providers (ANSPs), airports, etc. Under the forthcoming paradigm of trajectory based operations (TBO), the flight 4-Dimensional trajectory has been anticipated to further enhance the connection between flight planning and execution phases, thus fostering such collaboration in ATFM. Moreover, under nowadays operations, ground holding is a typical measure undertaken in many widely-used ATFM programs. Even though holding on the ground, at the origin airport, has the advantage of fuel efficiency over the air holding, it turns out that its feature of low flexibility would, in some circumstances, affect the ATFM performance. Yet, with proper flight trajectory management, it is also possible to have delay airborne at no extra fuel cost than performing ground holding. This PhD thesis firstly focuses on this trajectory management, specifically on a cost-based linear holding practice. The linear holding is realized progressively along the planned trajectory through precise speed control which can be enabled by aircraft trajectory optimization techniques. Some typical short/mid haul flights are simulated for achieving the maximum airborne delay that can be yielded using same fuel consumption as initially scheduled. Based on this, its potential applicability is demonstrated. A network ATFM model is adapted from the well-studied Bertsimas Stock-Patterson (BSP) model, incorporating different types of delay (including the linear holding) to flexibly handle the traffic flow with a set of given (yet changeable) capacities. In order that the benefits of the model can be fully realized, AUs are required to participate in the decision-making process, submitting for instance the maximum linear holding bound per flight along the planned trajectory. Next, increased AUs' participation is expected for a proposed Collaborative ATFM framework, in which not only various delay initiatives are considered, but also alternative trajectories which allow flights to route out of the identified hotspot areas. A centralized linear programming optimization model then computes for the best trajectory selections and the optimal delay distributions across all concerned flights. Finally, ANSPs' involvement is additionally considered for the framework, through dynamic airspace reconfiguration, further enhancing the collaboration between ATFM stakeholders. As such, the traffic flow regulation and sector opening scheduling are bounded into an integrated optimization model, and thus are conducted in a synchronized way. Results indicate that the performance of demand and capacity balancing can be even improved if compared with the previous ATFM models presented in this PhD thesis.El sistema de transport aeri actual està arribant al seu límit de capacitat en molts països i regions del món. Una gestió del flux de trànsit aeri (ATFM) més adequada podria mitigar aquest desequilibri entre la demanda i la capacitat. La funció de l'ATFM és regular els fluxos de trànsit aeri segons la capacitat de control del trànsit aeri, i alhora assegurar que els vols siguin segurs i eficients. Les regulacions del sistema d'ATFM es poden aplicar molt abans de l'execució del vol més d'un any abans. Un cop aplicades, aquestes regulacions continuaran evolucionant, amb informació actualitzada, fins el dia de la seva execució. El llarg període entre la planificació del vol i la seva execució permetrà una important col·laboració entre els diferents membres implicats, inclosa l'autoritat de l'ATFM, els usuaris de l'espai aeri (AUs), els proveïdors de serveis de navegació aèria (ANSP), els aeroports, etc. En les operacions d'avui en dia l'espera a terra és una de les regulacions que més aplica el sistema d'ATFM per tal d'evitar congestions als aeroports o sectors de l'espai aeri. Tot i que esperar a terra, a l'aeroport d'origen, té l'avantatge de consumir menys combustible que esperar a l'aire a l'aeroport de destí, la seva poca flexibilitat podria afectar negativament al rendiment de l'ATFM en algunes circumstàncies. Tanmateix, amb una gestió adequada de la trajectòria de vol, també és possible efectuar cert retard a l'aire sense cap cost addicional de combustible respecte al que resultaria esperant a terra. Aquesta tesi doctoral s'enfoca en primer lloc en aquesta gestió de trajectòria de vol, específicament en una pràctica d'espera tenint en compte els costos per l'aerolínia. L'espera lineal s'efectua progressivament al llarg de la trajectòria planificada mitjançant un control precís de la velocitat. Les velocitats que generen l'espera desitjada durant el vol és calculen mitjançant tècniques d'optimització. Alguns vols típics de curt i mig abast es simulen per quantificar el màxim retard a l'aire que es podria generar utilitzant el mateix consum de combustible que el previst inicialment. Basant-se en els resultats obtinguts, s'explora la seva aplicabilitat potencial. Es desenvolupa un model de la xarxa d'ATFM basat en el model de Bertsima Stock-Patterson. Com a novetat, el model desenvolupat en aquesta tesi incorpora diferents tipus de retard (incloent-hi l'espera lineal) per gestionar de forma més flexible el flux de trànsit donat un conjunt de capacitats pre-definides. Per tal d'explotar al màxim els beneficis del model proposat en aquesta tesi, les autoritats regionals estan obligades a participar en el procés de presa de decisions, declarant, per exemple, la màxima espera lineal associada a cada vol al llarg de la trajectòria planejada. Tot seguit, s'inclou la participació dels AUs en un sistema d'ATFM col·laboratiu, en el qual no només es consideren diverses tipus de retard per balancejar la capacitat i la demanda, sinó també trajectòries alternatives que permeten que els vols evitin de forma òptima els sectors de l?espai aeri congestionats. Un model d'optimització centralitzat basat en programació lineal calcula les millors seleccions de trajectòria i les distribucions òptimes de retard en tots els vols afectats per la regulació. Es demostra que incloure trajectòries alternatives pot reduir notablement la quantitat de retards. Finalment, es considera també la participació de l'ANSP en el sistema d'ATFM, a través de la configuració dinàmica de l'espai aeri, millorant encara més la col·laboració entre els membres implicats en el sistema. Com a tal, la regulació del flux de trànsit i la programació d'obertura dels diferents sectors de l'espai aeri s'inclouen en un model integrat d'optimització i, per tant, es programen de forma sincronitzada. Els resultats suggereixen que el rendiment del balanc¸ de la demanda i la capacitat es pot millorar encara m´es amb aquest sistema ATFM col·laboratiu complert. El nou model de balanc¸ de demanda i capacitat millora encara ées els resultats, si es compara amb els altres models d’ATFM presentats també en aquesta tesi doctoral.El sistema de transporte aéreo actual está llegando a su límite de capacidad en muchos países y regiones del mundo. Como consecuencia, éste tiende a ser menos eficiente e incluso en ocasiones incapaz de afrontar la enorme demanda de tráfico aéreo que incluso hoy en día crece rápidamente. Este hecho se ha visto evidenciado por los enormes retrasos registrados en diferentes lugares los últimos años, lo cual ha comportado enormes pérdidas económicas para la sociedad. Una gestión del flujo del tráfico aéreo (ATFM) más adecuada podría mitigar este desequilibrio entre la demanda y la capacidad. La función del ATFM es regular los flujos de tráfico aéreo según la capacidad de control del tráfico aéreo, siempre asegurando que los vuelos sean seguros y eficientes. Las regulaciones del sistema de ATFM se pueden aplicar mucho antes de la ejecución del vuelo –más de un año antes– en función de las previsiones de tráfico aéreo y de la capacidad esperada. Una vez aplicadas, estas regulaciones continuarán evolucionando, con información actualizada, hasta el día de su ejecución. El largo periodo entre la planificación del vuelo y su ejecución permitirá una importante colaboración entre los diferentes miembros implicados, incluida la autoridad del ATFM, los usuarios del espacio aéreo (AUs), los proveedores de servicios de navegación aérea (ANSP), los aeropuertos, etc. En el marco del futuro paradigma de las operaciones basadas en trayectorias, la introducción de vuelos con control sobre la trayectoria en las 4 dimensiones espera mejorar aún más la conexión entre las fases de planificación del vuelo y su ejecución, fomentando así la colaboración en el proceso de toma de decisiones del sistema ATFM. En las operaciones de hoy en día la espera en tierra es una de las regulaciones que más se aplica en el sistema de ATFM con el fin de evitar congestiones en los aeropuertos o en los sectores del espacio aéreo. Aun teniendo en cuenta que esperar en tierra, en el aeropuerto de origen, tiene la ventaja de consumir menos combustible que esperar en el aire en el aeropuerto de destino, su poca flexibilidad podría afectar negativamente al rendimiento del ATFM en algunas circunstancias. Aun así, con una gestión adecuada de la trayectoria de vuelo, también es posible efectuar cierto retraso en el aire sin ningún coste adicional de combustible respecto a lo que resultaría esperando en tierra. Esta tesis doctoral se centra en primer lugar en esta gestión de la trayectoria de vuelo, específicamente en una práctica de espera lineal considerando los costes para la aerolínea. La espera lineal se efectúa progresivamente a lo largo de la trayectoria planificada mediante un control preciso de la velocidad. Las velocidades que generan la espera deseada durante el vuelo se calculan mediante técnicas de optimización. Algunos vuelos típicos de corto y medio alcance se simulan para cuantificar el máximo retraso en el aire que se podría generar utilizando el mismo consumo de combustible que el previsto inicialmente. Basándose en los resultados obtenidos, se investiga su potencial aplicabilidad, como por ejemplo mejorar la planificación de programas de flujo del espacio aéreo, y ayudar a neutralizar los retrasos no deseados adicionales debidos a la incertidumbre del sistema. Se desarrolla un modelo de la red de ATFM basado en el conocido modelo Bertsimas Stock-Patterson (BSP). Como novedad, el modelo desarrollado en esta tesis incorpora diferentes tipos de retraso (incluyendo la espera lineal) para gestionar de manera más flexible el flujo de tráfico dado un conjunto de capacidades predefinidas. Con el fin de explotar al máximo los beneficios del modelo propuesto en esta tesis, se asume que las aerolíneas participaran en el proceso de toma de decisiones, declarando, por ejemplo, la máxima espera lineal asociada a cada vuelo a lo largo de la trayectoria planeada. Este concepto se ilustra con un caso de estudio, donde se demuestra una reducción significativa de los retrasos, comparado con el modelo BSP. Seguidamente, se incluye la participación de las aerolíneas en un sistema de ATFM colaborativo, en el cual no tan sólo se consideran diferentes tipos de retrasos para balancear la capacidad y la demanda, sino también trayectorias alternativas que permiten que los vuelos eviten de forma óptima los sectores del espacio aéreo congestionados. Un modelo de optimización centralizado basado en programación lineal calcula las mejores selecciones de la trayectoria y las distribuciones óptimas de retraso en todos los vuelos afectado por la regulación. Se demuestra que incluir trayectorias alternativas puede reducir notablemente la cantidad de retrasos. Finalmente, se considera también la participación de los ANSP en el sistema de ATFM, a través de la configuración dinámica del espacio aéreo, mejorando aún más la colaboración entre los miembros implicados en el sistema. Como tales, la regulación del flujo de tráfico aéreo y la programación de apertura de los diferentes sectores del espacio aéreo se incluyen en un modelo integrado de optimización y, por lo tanto, se programan de manera sincronizada. El nuevo modelo de balance de demanda y capacidad mejora aún más los resultados, si se compara con los otros modelos ATFM presentados también en esta tesis doctoralPostprint (published version

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 333)

    Get PDF
    This bibliography lists 122 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during January, 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Effects of linear holding for reducing additional flight delays without extra fuel consumption

    Get PDF
    This paper presents an approach to implement linear holding (LH) for flights initially subject to ground holding, in the context of Trajectory Based Operations. The aim is to neutralize additional delays raised from the lack of coordination between various traffic management initiatives (TMIs) and without incurring extra fuel consumption. Firstly, motivated from previous works on the features of LH to absorb delays airborne, a potential applicability of LH to compensate part of the fixed ground holding is proposed. Then, the dynamic adjustment of LH in response to TMIs-associated tactical delays is formulated as a multi-stage aircraft trajectory optimization problem, addressing both pre- and post-departure additional delays. Results suggest that additional delays of 25 mins in a typical case study can be totally recovered at no extra fuel cost. A notable extent of delay reduction observed from the computational experiments further supports the benefits of LH for reducing different combinations of additional delays without consuming extra fuel.Peer ReviewedPostprint (author's final draft
    corecore