1,110 research outputs found

    ShadowSense: Unsupervised Domain Adaptation and Feature Fusion for Shadow-Agnostic Tree Crown Detection from RGB-Thermal Drone Imagery

    Full text link
    Accurate detection of individual tree crowns from remote sensing data poses a significant challenge due to the dense nature of forest canopy and the presence of diverse environmental variations, e.g., overlapping canopies, occlusions, and varying lighting conditions. Additionally, the lack of data for training robust models adds another limitation in effectively studying complex forest conditions. This paper presents a novel method for detecting shadowed tree crowns and provides a challenging dataset comprising roughly 50k paired RGB-thermal images to facilitate future research for illumination-invariant detection. The proposed method (ShadowSense) is entirely self-supervised, leveraging domain adversarial training without source domain annotations for feature extraction and foreground feature alignment for feature pyramid networks to adapt domain-invariant representations by focusing on visible foreground regions, respectively. It then fuses complementary information of both modalities to effectively improve upon the predictions of an RGB-trained detector and boost the overall accuracy. Extensive experiments demonstrate the superiority of the proposed method over both the baseline RGB-trained detector and state-of-the-art techniques that rely on unsupervised domain adaptation or early image fusion. Our code and data are available: https://github.com/rudrakshkapil/ShadowSenseComment: Accepted in IEEE/CVF Winter Applications of Computer Vision (WACV) 2024 main conference! 8 pages (11 with bibliography), 5 figures, 3 table

    A Chronological Survey of Theoretical Advancements in Generative Adversarial Networks for Computer Vision

    Full text link
    Generative Adversarial Networks (GANs) have been workhorse generative models for last many years, especially in the research field of computer vision. Accordingly, there have been many significant advancements in the theory and application of GAN models, which are notoriously hard to train, but produce good results if trained well. There have been many a surveys on GANs, organizing the vast GAN literature from various focus and perspectives. However, none of the surveys brings out the important chronological aspect: how the multiple challenges of employing GAN models were solved one-by-one over time, across multiple landmark research works. This survey intends to bridge that gap and present some of the landmark research works on the theory and application of GANs, in chronological order

    Adaptive Face Recognition Using Adversarial Information Network

    Full text link
    In many real-world applications, face recognition models often degenerate when training data (referred to as source domain) are different from testing data (referred to as target domain). To alleviate this mismatch caused by some factors like pose and skin tone, the utilization of pseudo-labels generated by clustering algorithms is an effective way in unsupervised domain adaptation. However, they always miss some hard positive samples. Supervision on pseudo-labeled samples attracts them towards their prototypes and would cause an intra-domain gap between pseudo-labeled samples and the remaining unlabeled samples within target domain, which results in the lack of discrimination in face recognition. In this paper, considering the particularity of face recognition, we propose a novel adversarial information network (AIN) to address it. First, a novel adversarial mutual information (MI) loss is proposed to alternately minimize MI with respect to the target classifier and maximize MI with respect to the feature extractor. By this min-max manner, the positions of target prototypes are adaptively modified which makes unlabeled images clustered more easily such that intra-domain gap can be mitigated. Second, to assist adversarial MI loss, we utilize a graph convolution network to predict linkage likelihoods between target data and generate pseudo-labels. It leverages valuable information in the context of nodes and can achieve more reliable results. The proposed method is evaluated under two scenarios, i.e., domain adaptation across poses and image conditions, and domain adaptation across faces with different skin tones. Extensive experiments show that AIN successfully improves cross-domain generalization and offers a new state-of-the-art on RFW dataset.Comment: Accepted by TI

    Bridging the Domain Gap for Multi-Agent Perception

    Full text link
    Existing multi-agent perception algorithms usually select to share deep neural features extracted from raw sensing data between agents, achieving a trade-off between accuracy and communication bandwidth limit. However, these methods assume all agents have identical neural networks, which might not be practical in the real world. The transmitted features can have a large domain gap when the models differ, leading to a dramatic performance drop in multi-agent perception. In this paper, we propose the first lightweight framework to bridge such domain gaps for multi-agent perception, which can be a plug-in module for most existing systems while maintaining confidentiality. Our framework consists of a learnable feature resizer to align features in multiple dimensions and a sparse cross-domain transformer for domain adaption. Extensive experiments on the public multi-agent perception dataset V2XSet have demonstrated that our method can effectively bridge the gap for features from different domains and outperform other baseline methods significantly by at least 8% for point-cloud-based 3D object detection.Comment: Accepted by ICRA2023.Code: https://github.com/DerrickXuNu/MPD

    Low-light Pedestrian Detection in Visible and Infrared Image Feeds: Issues and Challenges

    Full text link
    Pedestrian detection has become a cornerstone for several high-level tasks, including autonomous driving, intelligent transportation, and traffic surveillance. There are several works focussed on pedestrian detection using visible images, mainly in the daytime. However, this task is very intriguing when the environmental conditions change to poor lighting or nighttime. Recently, new ideas have been spurred to use alternative sources, such as Far InfraRed (FIR) temperature sensor feeds for detecting pedestrians in low-light conditions. This study comprehensively reviews recent developments in low-light pedestrian detection approaches. It systematically categorizes and analyses various algorithms from region-based to non-region-based and graph-based learning methodologies by highlighting their methodologies, implementation issues, and challenges. It also outlines the key benchmark datasets that can be used for research and development of advanced pedestrian detection algorithms, particularly in low-light situation
    • …
    corecore