12,275 research outputs found

    Multi-Sided Boundary Labeling

    Full text link
    In the Boundary Labeling problem, we are given a set of nn points, referred to as sites, inside an axis-parallel rectangle RR, and a set of nn pairwise disjoint rectangular labels that are attached to RR from the outside. The task is to connect the sites to the labels by non-intersecting rectilinear paths, so-called leaders, with at most one bend. In this paper, we study the Multi-Sided Boundary Labeling problem, with labels lying on at least two sides of the enclosing rectangle. We present a polynomial-time algorithm that computes a crossing-free leader layout if one exists. So far, such an algorithm has only been known for the cases in which labels lie on one side or on two opposite sides of RR (here a crossing-free solution always exists). The case where labels may lie on adjacent sides is more difficult. We present efficient algorithms for testing the existence of a crossing-free leader layout that labels all sites and also for maximizing the number of labeled sites in a crossing-free leader layout. For two-sided boundary labeling with adjacent sides, we further show how to minimize the total leader length in a crossing-free layout

    Mixed Map Labeling

    Get PDF
    Point feature map labeling is a geometric problem, in which a set of input points must be labeled with a set of disjoint rectangles (the bounding boxes of the label texts). Typically, labeling models either use internal labels, which must touch their feature point, or external (boundary) labels, which are placed on one of the four sides of the input points' bounding box and which are connected to their feature points by crossing-free leader lines. In this paper we study polynomial-time algorithms for maximizing the number of internal labels in a mixed labeling model that combines internal and external labels. The model requires that all leaders are parallel to a given orientation θ[0,2π)\theta \in [0,2\pi), whose value influences the geometric properties and hence the running times of our algorithms.Comment: Full version for the paper accepted at CIAC 201
    corecore