208 research outputs found

    Smart movement detection for Android phones

    Get PDF

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    Automatic identification of physical activity intensity and modality from the fusion of accelerometry and heart rate data

    Get PDF
    Background: Physical activity (PA) is essential to prevent and to treat a variety of chronic diseases. The automated detection and quantification of PA over time empowers lifestyle interventions, facilitating reliable exercise tracking and data-driven counseling. Methods: We propose and compare various combinations of machine learning (ML) schemes for the automatic classification of PA from multi-modal data, simultaneously captured by a biaxial accelerometer and a heart rate (HR) monitor. Intensity levels (low/moderate/vigorous) were recognized, as well as for vigorous exercise, its modality (sustained aerobic/resistance/mixed). In total, 178.63 h of data about PA intensity (65.55% low/18.96% moderate/15.49% vigorous) and 17.00 h about modality were collected in two experiments: one in free-living conditions, another in a fitness center under controlled protocols. The structure used for automatic classification comprised: a) definition of 42 time-domain signal features, b) dimensionality reduction, c) data clustering, and d) temporal filtering to exploit time redundancy by means of a Hidden Markov Model (HMM). Four dimensionality reduction techniques and four clustering algorithms were studied. In order to cope with class imbalance in the dataset, a custom performance metric was defined to aggregate recognition accuracy, precision and recall. Results: The best scheme, which comprised a projection through Linear Discriminant Analysis (LDA) and k-means clustering, was evaluated in leave-one-subject-out cross-validation; notably outperforming the standard industry procedures for PA intensity classification: score 84.65%, versus up to 63.60%. Errors tended to be brief and to appear around transients. Conclusions: The application of ML techniques for pattern identification and temporal filtering allowed to merge accelerometry and HR data in a solid manner, and achieved markedly better recognition performances than the standard methods for PA intensity estimation

    Machine Learning and Pedometers: An Integration-Based Convolutional Neural Network for Step Counting and Detection

    Get PDF
    This thesis explores a machine learning-based approach to step detection and counting for a pedometer. Our novelty is to analyze a window of time containing an arbitrary number of steps, and integrate the detected count using a sliding window technique. We compare the effectiveness of this approach against classic deterministic algorithms. While classic algorithms perform well during regular gait (e.g. walking or running), they can perform significantly worse during semi-regular and irregular gaits that still contribute to a person’s overall step count. These non-regular gaits can make up a significant portion of the daily step count for people, and an improvement to measuring these gaits can drastically improve the performance of the overall pedometer. Using data collected by 30 participants performing 3 different activities to simulate regular, semi-regular, and irregular gaits, a training and testing strategy was implemented using a sliding window algorithm of pedometer accelerometer data. Data was cut in rows representative of the sliding window, normalized according to the minimum and maximum values of the corresponding sensor-axis combination, and finally collated in specific training and holdout groups for validation purposes. Nine models were trained to predict a continuous count of steps within a given window, for each fold of our five-fold validation process. These nine models correspond to each gait and sensor combination from the collected data set. Once models are trained, they are evaluated against the holdout validation set to test for both run count accuracy (RCA), a measure of the pedometers detected step to actual step count, and step detection accuracy (SDA), a measure of how well the algorithm can predict the time of an actual step. These are obtained through an additional post-processing step that integrates the predicted steps per window over time in order to find the total count of steps within a given training data set. Additionally, an algorithm estimates the times when predicted steps occur by using the running count of total steps. Once testing is performed on all nine models, the process is repeated across all five folds to verify model architecture consistency throughout the entire data set. A window size test was implemented to vary the window size of the sliding window algorithm between 1 and 10 seconds to discover the effect of the sliding window size on the convolutional neural network\u27s step count and detection performance. Again, these tests were run across five different folds to ensure an accurate average measure of each model\u27s performance. By comparing the metrics of RCA and SDA between the machine-learning approach and other algorithms, we see that the method introduced in this thesis performs similarly or better than both a consumer pedometer device, as well as the three classic algorithms of peak detection, thresholding, and autocorrelation. It was found that with a window size of two seconds, this novel approach can detect steps with an overall average RCA of 0.99 and SDA of 0.88, better than any individual classic algorithm

    Analysis and enhancement of interpersonal coordination using inertial measurement unit solutions

    Get PDF
    Die heutigen mobilen Kommunikationstechnologien haben den Umfang der verbalen und textbasierten Kommunikation mit anderen Menschen, sozialen Robotern und künstlicher Intelligenz erhöht. Auf der anderen Seite reduzieren diese Technologien die nonverbale und die direkte persönliche Kommunikation, was zu einer gesellschaftlichen Thematik geworden ist, weil die Verringerung der direkten persönlichen Interaktionen eine angemessene Wahrnehmung sozialer und umgebungsbedingter Reizmuster erschweren und die Entwicklung allgemeiner sozialer Fähigkeiten bremsen könnte. Wissenschaftler haben aktuell die Bedeutung nonverbaler zwischenmenschlicher Aktivitäten als soziale Fähigkeiten untersucht, indem sie menschliche Verhaltensmuster in Zusammenhang mit den jeweilgen neurophysiologischen Aktivierungsmustern analzsiert haben. Solche Querschnittsansätze werden auch im Forschungsprojekt der Europäischen Union "Socializing sensori-motor contingencies" (socSMCs) verfolgt, das darauf abzielt, die Leistungsfähigkeit sozialer Roboter zu verbessern und Autismus-Spektrumsstörungen (ASD) adäquat zu behandeln. In diesem Zusammenhang ist die Modellierung und das Benchmarking des Sozialverhaltens gesunder Menschen eine Grundlage für theorieorientierte und experimentelle Studien zum weiterführenden Verständnis und zur Unterstützung interpersoneller Koordination. In diesem Zusammenhang wurden zwei verschiedene empirische Kategorien in Abhängigkeit von der Entfernung der Interagierenden zueinander vorgeschlagen: distale vs. proximale Interaktionssettings, da sich die Struktur der beteiligten kognitiven Systeme zwischen den Kategorien ändert und sich die Ebene der erwachsenden socSMCs verschiebt. Da diese Dissertation im Rahmen des socSMCs-Projekts entstanden ist, wurden Interaktionssettings für beide Kategorien (distal und proximal) entwickelt. Zudem wurden Ein-Sensor-Lösungen zur Reduzierung des Messaufwands (und auch der Kosten) entwickelt, um eine Messung ausgesuchter Verhaltensparameter bei einer Vielzahl von Menschen und sozialen Interaktionen zu ermöglichen. Zunächst wurden Algorithmen für eine kopfgetragene Trägheitsmesseinheit (H-IMU) zur Messung der menschlichen Kinematik als eine Ein-Sensor-Lösung entwickelt. Die Ergebnisse bestätigten, dass die H-IMU die eigenen Gangparameter unabhängig voneinander allein auf Basis der Kopfkinematik messen kann. Zweitens wurden—als ein distales socSMC-Setting—die interpersonellen Kopplungen mit einem Bezug auf drei interagierende Merkmale von „Übereinstimmung“ (engl.: rapport) behandelt: Positivität, gegenseitige Aufmerksamkeit und Koordination. Die H-IMUs überwachten bestimmte soziale Verhaltensereignisse, die sich auf die Kinematik der Kopforientierung und Oszillation während des Gehens und Sprechens stützen, so dass der Grad der Übereinstimmung geschätzt werden konnte. Schließlich belegten die Ergebnisse einer experimentellen Studie, die zu einer kollaborativen Aufgabe mit der entwickelten IMU-basierten Tablet-Anwendung durchgeführt wurde, unterschiedliche Wirkungen verschiedener audio-motorischer Feedbackformen für eine Unterstützung der interpersonellen Koordination in der Kategorie proximaler sensomotorischer Kontingenzen. Diese Dissertation hat einen intensiven interdisziplinären Charakter: Technologische Anforderungen in den Bereichen der Sensortechnologie und der Softwareentwicklung mussten in direktem Bezug auf vordefinierte verhaltenswissenschaftliche Fragestellungen entwickelt und angewendet bzw. gelöst werden—und dies in zwei unterschiedlichen Domänen (distal, proximal). Der gegebene Bezugsrahmen wurde als eine große Herausforderung bei der Entwicklung der beschriebenen Methoden und Settings wahrgenommen. Die vorgeschlagenen IMU-basierten Lösungen könnten dank der weit verbreiteten IMU-basierten mobilen Geräte zukünftig in verschiedene Anwendungen perspektiv reich integriert werden.Today’s mobile communication technologies have increased verbal and text-based communication with other humans, social robots and intelligent virtual assistants. On the other hand, the technologies reduce face-to-face communication. This social issue is critical because decreasing direct interactions may cause difficulty in reading social and environmental cues, thereby impeding the development of overall social skills. Recently, scientists have studied the importance of nonverbal interpersonal activities to social skills, by measuring human behavioral and neurophysiological patterns. These interdisciplinary approaches are in line with the European Union research project, “Socializing sensorimotor contingencies” (socSMCs), which aims to improve the capability of social robots and properly deal with autism spectrum disorder (ASD). Therefore, modelling and benchmarking healthy humans’ social behavior are fundamental to establish a foundation for research on emergence and enhancement of interpersonal coordination. In this research project, two different experimental settings were categorized depending on interactants’ distance: distal and proximal settings, where the structure of engaged cognitive systems changes, and the level of socSMCs differs. As a part of the project, this dissertation work referred to this spatial framework. Additionally, single-sensor solutions were developed to reduce costs and efforts in measuring human behaviors, recognizing the social behaviors, and enhancing interpersonal coordination. First of all, algorithms using a head worn inertial measurement unit (H-IMU) were developed to measure human kinematics, as a baseline for social behaviors. The results confirmed that the H-IMU can measure individual gait parameters by analyzing only head kinematics. Secondly, as a distal sensorimotor contingency, interpersonal relationship was considered with respect to a dynamic structure of three interacting components: positivity, mutual attentiveness, and coordination. The H-IMUs monitored the social behavioral events relying on kinematics of the head orientation and oscillation during walk and talk, which can contribute to estimate the level of rapport. Finally, in a new collaborative task with the proposed IMU-based tablet application, results verified effects of different auditory-motor feedbacks on the enhancement of interpersonal coordination in a proximal setting. This dissertation has an intensive interdisciplinary character: Technological development, in the areas of sensor and software engineering, was required to apply to or solve issues in direct relation to predefined behavioral scientific questions in two different settings (distal and proximal). The given frame served as a reference in the development of the methods and settings in this dissertation. The proposed IMU-based solutions are also promising for various future applications due to widespread wearable devices with IMUs.European Commission/HORIZON2020-FETPROACT-2014/641321/E

    A 'one-size-fits-most' walking recognition method for smartphones, smartwatches, and wearable accelerometers

    Full text link
    The ubiquity of personal digital devices offers unprecedented opportunities to study human behavior. Current state-of-the-art methods quantify physical activity using 'activity counts,' a measure which overlooks specific types of physical activities. We proposed a walking recognition method for sub-second tri-axial accelerometer data, in which activity classification is based on the inherent features of walking: intensity, periodicity, and duration. We validated our method against 20 publicly available, annotated datasets on walking activity data collected at various body locations (thigh, waist, chest, arm, wrist). We demonstrated that our method can estimate walking periods with high sensitivity and specificity: average sensitivity ranged between 0.92 and 0.97 across various body locations, and average specificity for common daily activities was typically above 0.95. We also assessed the method's algorithmic fairness to demographic and anthropometric variables and measurement contexts (body location, environment). Finally, we have released our method as open-source software in MATLAB and Python.Comment: 39 pages, 4 figures (incl. 1 supplementary), and 5 tables (incl. 2 supplementary

    From data acquisition to data fusion : a comprehensive review and a roadmap for the identification of activities of daily living using mobile devices

    Get PDF
    This paper focuses on the research on the state of the art for sensor fusion techniques, applied to the sensors embedded in mobile devices, as a means to help identify the mobile device user’s daily activities. Sensor data fusion techniques are used to consolidate the data collected from several sensors, increasing the reliability of the algorithms for the identification of the different activities. However, mobile devices have several constraints, e.g., low memory, low battery life and low processing power, and some data fusion techniques are not suited to this scenario. The main purpose of this paper is to present an overview of the state of the art to identify examples of sensor data fusion techniques that can be applied to the sensors available in mobile devices aiming to identify activities of daily living (ADLs)

    An Adaptive Human Activity-Aided Hand-Held Smartphone-Based Pedestrian Dead Reckoning Positioning System

    Get PDF
    Pedestrian dead reckoning (PDR), enabled by smartphones’ embedded inertial sensors, is widely applied as a type of indoor positioning system (IPS). However, traditional PDR faces two challenges to improve its accuracy: lack of robustness for different PDR-related human activities and positioning error accumulation over elapsed time. To cope with these issues, we propose a novel adaptive human activity-aided PDR (HAA-PDR) IPS that consists of two main parts, human activity recognition (HAR) and PDR optimization. (1) For HAR, eight different locomotion-related activities are divided into two classes: steady-heading activities (ascending/descending stairs, stationary, normal walking, stationary stepping, and lateral walking) and non-steady-heading activities (door opening and turning). A hierarchical combination of a support vector machine (SVM) and decision tree (DT) is used to recognize steady-heading activities. An autoencoder-based deep neural network (DNN) and a heading range-based method to recognize door opening and turning, respectively. The overall HAR accuracy is over 98.44%. (2) For optimization methods, a process automatically sets the parameters of the PDR differently for different activities to enhance step counting and step length estimation. Furthermore, a method of trajectory optimization mitigates PDR error accumulation utilizing the non-steady-heading activities. We divided the trajectory into small segments and reconstructed it after targeted optimization of each segment. Our method does not use any a priori knowledge of the building layout, plan, or map. Finally, the mean positioning error of our HAA-PDR in a multilevel building is 1.79 m, which is a significant improvement in accuracy compared with a baseline state-of-the-art PDR system

    Detecting Periods of Eating in Everyday Life by Tracking Wrist Motion — What is a Meal?

    Get PDF
    Eating is one of the most basic activities observed in sentient animals, a behavior so natural that humans often eating without giving the activity a second thought. Unfortunately, this often leads to consuming more calories than expended, which can cause weight gain - a leading cause of diseases and death. This proposal describes research in methods to automatically detect periods of eating by tracking wrist motion so that calorie consumption can be tracked. We first briefly discuss how obesity is caused due to an imbalance in calorie intake and expenditure. Calorie consumption and expenditure can be tracked manually using tools like paper diaries, however it is well known that human bias can affect the accuracy of such tracking. Researchers in the upcoming field of automated dietary monitoring (ADM) are attempting to track diet using electronic methods in an effort to mitigate this bias. We attempt to replicate a previous algorithm that detects eating by tracking wrist motion electronically. The previous algorithm was evaluated on data collected from 43 subjects using an iPhone as the sensor. Periods of time are segmented first, and then classified using a naive Bayesian classifier. For replication, we describe the collection of the Clemson all-day data set (CAD), a free-living eating activity dataset containing 4,680 hours of wrist motion collected from 351 participants - the largest of its kind known to us. We learn that while different sensors are available to log wrist acceleration data, no unified convention exists, and this data must thus be transformed between conventions. We learn that the performance of the eating detection algorithm is affected due to changes in the sensors used to track wrist motion, increased variability in behavior due to a larger participant pool, and the ratio of eating to non-eating in the dataset. We learn that commercially available acceleration sensors contain noise in their reported readings which affects wrist tracking specifically due to the low magnitude of wrist acceleration. Commercial accelerometers can have noise up to 0.06g which is acceptable in applications like automobile crash testing or pedestrian indoor navigation, but not in ones using wrist motion. We quantify linear acceleration noise in our free-living dataset. We explain sources of noise, a method to mitigate it, and also evaluate the effect of this noise on the eating detection algorithm. By visualizing periods of eating in the collected dataset we learn that that people often conduct secondary activities while eating, such as walking, watching television, working, and doing household chores. These secondary activities cause wrist motions that obfuscate wrist motions associated with eating, which increases the difficulty of detecting periods of eating (meals). Subjects reported conducting secondary activities in 72% of meals. Analysis of wrist motion data revealed that the wrist was resting 12.8% of the time during self-reported meals, compared to only 6.8% of the time in a cafeteria dataset. Walking motion was found during 5.5% of the time during meals in free-living, compared to 0% in the cafeteria. Augmenting an eating detection classifier to include walking and resting detection improved the average per person accuracy from 74% to 77% on our free-living dataset (t[353]=7.86, p\u3c0.001). This suggests that future data collections for eating activity detection should also collect detailed ground truth on secondary activities being conducted during eating. Finally, learning from this data collection, we describe a convolutional neural network (CNN) to detect periods of eating by tracking wrist motion during everyday life. Eating uses hand-to-mouth gestures for ingestion, each of which lasts appx 1-5 sec. The novelty of our new approach is that we analyze a much longer window (0.5-15 min) that can contain other gestures related to eating, such as cutting or manipulating food, preparing foods for consumption, and resting between ingestion events. The context of these other gestures can improve the detection of periods of eating. We found that accuracy at detecting eating increased by 15% in longer windows compared to shorter windows. Overall results on CAD were 89% detection of meals with 1.7 false positives for every true positive (FP/TP), and a time weighted accuracy of 80%
    • …
    corecore