194 research outputs found

    Multi-Sector and Multi-Panel Performance in 5G mmWave Cellular Networks

    Full text link
    The next generation of cellular networks (5G) will exploit the mmWave spectrum to increase the available capacity. Communication at such high frequencies, however, suffers from high path loss and blockage, therefore directional transmissions using antenna arrays and dense deployments are needed. Thus, when evaluating the performance of mmWave mobile networks, it is necessary to accurately model the complex channel, the directionality of the transmission, but also the interplay that these elements can have with the whole protocol stack, both in the radio access and in the higher layers. In this paper, we improve the channel model abstraction of the mmWave module for ns-3, by introducing the support of a more realistic antenna array model, compliant with 3GPP NR requirements, and of multiple antenna arrays at the base stations and mobile handsets. We then study the end-to-end performance of a mmWave cellular network by varying the channel and antenna array configurations, and show that increasing the number of antenna arrays and, consequently, the number of sectors is beneficial for both throughput and latency.Comment: to be published in 2018 IEEE Global Communications Conference: Communication QoS, Reliability and Modeling (Globecom2018 CQRM), Abu Dhabi, UAE, Dec 201

    ns-3 Implementation of the 3GPP MIMO Channel Model for Frequency Spectrum above 6 GHz

    Full text link
    Communications at mmWave frequencies will be a key enabler of the next generation of cellular networks, due to the multi-Gbps rate that can be achieved. However, there are still several problems that must be solved before this technology can be widely adopted, primarily associated with the interplay between the variability of mmWave links and the complexity of mobile networks. An end-to-end network simulator represents a great tool to assess the performance of any proposed solution to meet the stringent 5G requirements. Given the criticality of channel propagation characteristics at higher frequencies, we present our implementation of the 3GPP channel model for the 6-100 GHz band for the ns-3 end-to-end 5G mmWave module, and detail its associated MIMO beamforming architecture

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    Hand Blockage Impact on 5G mmWave Beam Management Performance

    Get PDF

    Mobile 5G millimeter-wave multi-antenna systems

    Get PDF
    In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of Universitat Politècnica de Catalunya's products or services. Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink.Tesi en modalitat de compendi de publicacionsMassive antenna architectures and millimeter-wave bands appear on the horizon as the enabling technologies of future broadband wireless links, promising unprecedented spectral efficiency and data rates. In the recently launched fifth generation of mobile communications, millimetric bands are already introduced but their widespread deployment still presents several feasibility issues. In particular, high-mobility environments represent the most challenging scenario when dealing with directive patterns, which are essential for the adequate reception of signals at those bands. Vehicular communications are expected to exploit the full potential of future generations due to the massive number of connected users and stringent requirements in terms of reliability, latency, and throughput while moving at high speeds. This thesis proposes two solutions to completely take advantage of multi-antenna systems in those cases: beamwidth adaptation of cellular stations when tracking vehicular users based on positioning and Doppler information and a tailored radiation diagram from a panel-based system of antennas mounted on the vehicle. Apart from cellular base stations and vehicles, a third entity that cannot be forgotten in future mobile communications are pedestrians. Past generations were developed around the figure of human users and, now, they must still be able to seamlessly connect with any other user of the network and exploit the new capabilities promised by 5G. The use of millimeter-waves is already been considered by handset manufacturers but the impact of the user (and the interaction with the phone) is drastically changed. The last part of this thesis is devoted to the study of human user dynamics and how they influence the achievable coverage with different distributed antenna systems on the phone.Les arquitectures massives d'antenes i les bandes mil·limètriques apareixen a l'horitzó com les tecnologies que impulsaran els futurs enllaços sense fils amb gran ample de banda i prometen una eficiència espectral i velocitat de transmissió sense precedents. A la recent cinquena generació de comunicacions mòbils, les bandes mil·limètriques ja en són una part constitutiva però el seu desplegament encara presenta certes dificultats. En concret, els entorns d'alta mobilitat representen el major repte quan es fan servir diagrames de radiació directius, els quals són essencials per una correcta recepció del senyal en aquestes bandes. S'espera que les comunicacions vehiculars delimitin les capacitats de les xarxes en futures generacions degut al gran nombre d'usuaris simultanis i els requeriments estrictes en termes de fiabilitat, retard i flux de dades mentre es mouen a grans velocitats. Aquesta tesi proposa dues solucions per tal d'explotar al màxim els sistemes de múltiples antenes en tals casos: un ample de feix adaptatiu de les estacions bases quan estiguin fent el seguiment d'un vehicle usuari basat en informació de la posició i el Doppler i el disseny d'un diagrama de radiació adequat al costat del vehicle basat en una estructura de múltiples panells muntats a l'estructura del mateix. A més de les estacions base i els vehicles, un tercer element que no pot ser obviat en aquests escenaris són els vianants. Les generacions anteriors van ser desenvolupades al voltant de la figura d'usuaris humans i ara han de seguir tenint la capacitat de connexió ininterrumpuda amb la resta d'usuaris i explotar les capacitats de 5G. L'ús de frequències mil·limètriques també es té en compte en la fabricació de telèfons mòbils però l'impacte de l'usuari és completament diferent. La última part de la tesis tracta l'estudi de les dinàmiques de l'usuari humà i com influeixen en la cobertura amb diferent sistemes distribuïts d'antenes.Postprint (published version

    Assessment of MU-MIMO schemes with cylindrical arrays under 3GPP 3D channel model for B5G networks

    Get PDF
    Beyond 5G technologies promise groundbreaking advances on the performance of cellular networks, by taking advantage of Massive MIMO in mmWave scenarios. The aim of this study is to analyze and test the performance of a 5G cell site equipped with large antenna arrays. It is of particular interest the comparison between the typical trisector cell design with a planar array for each sector, and the less investigated cylindrical array, able to maintain a constant pattern through the whole azimuthal range. To validate our analysis, we adopt the latest 3GPP-compliant 3D channel model and we evaluate the performance of multi-user and multi-layer precoding and combining schemes. Several MIMO configurations are taken into account, and we show that cylindrical arrays can improve the overall system performance, both in terms of achievable per-user rate and outage probability

    On Fixed Beamforming in Sectored mmWave Ultra Dense Networks at 73GHz

    Get PDF
    We investigate the use of fixed analogue transmit beamforming for downlink communication in millimetre-wave (mmWave) band ultra-dense networks (UDNs) at 73GHz. Our simulation study is based on 3D radiation patterns using a real design of large planar antenna arrays with different horizontal beamwidths and full characterisation of interference. The effects of network densification are captured through different ratios of the number of access points (APs) to the number of users. We quantify the system\u27s performance by evaluating outage and achievable rate. The results show that users with rates around the mean benefit more from the densification than from narrowing the beamwidth, but for users with low rates, narrow beams also provide a significant increase in throughput
    • …
    corecore