16 research outputs found

    Automatic detection method of epileptic seizures based on IRCMDE and PSO-SVM

    Get PDF
    Multi-scale dispersion entropy (MDE) has been widely used to extract nonlinear features of electroencephalography (EEG) signals and realize automatic detection of epileptic seizures. However, information loss and poor robustness will exist when MDE is used to measure the nonlinear complexity of the time sequence. To solve the above problems, an automatic detection method for epilepsy was proposed, based on improved refined composite multi-scale dispersion entropy (IRCMDE) and particle swarm algorithm optimization support vector machine (PSO-SVM). First, the refined composite multi-scale dispersion entropy (RCMDE) is introduced, and then the segmented average calculation of coarse-grained sequence is replaced by local maximum calculation to solve the problem of information loss. Finally, the entropy value is normalized to improve the robustness of characteristic parameters, and IRCMDE is formed. The simulated results show that when examining the complexity of the simulated signal, IRCMDE can eliminate the issue of information loss compared with MDE and RCMDE and weaken the entropy change caused by different parameter selections. In addition, IRCMDE is used as the feature parameter of the epileptic EEG signal, and PSO-SVM is used to identify the feature parameters. Compared with MDE-PSO-SVM, and RCMDE-PSO-SVM methods, IRCMDE-PSO-SVM can obtain more accurate recognition results

    Incipient fault diagnosis of rolling bearing using accumulative component kurtosis in SVD process

    Get PDF
    Rolling element bearing faults account for main causes of rotating machine failures. It is crucial to identify the incipient fault before the bearing steps into serious fault condition. The Hilbert envelope spectrum has been proved powerful and with high practical value to detect transient components in vibration signal but sensitive to noise. Based on the conventional singular value decomposition (SVD) theory, accumulative component kurtosis (ACK) is introduced to de-noising of vibration signal processing. The proposed ACK-SVD emphasizes the accumulative components (ACs) rather than the single singular component (SC) to select the effective SCs to recover signal. The superiority of the ACK-SVD over traditional SVD de-noising is verified by both simulated signals and actual vibration data from two rolling element bearing rigs. The results demonstrate the proposed method can efficiently identify the rolling element bearing faults, especially the early ones with strong background noise

    Application of Permutation Entropy and Permutation Min-Entropy in Multiple Emotional States Analysis of RRI Time Series

    Get PDF
    This study’s aim was to apply permutation entropy (PE) and permutation min-entropy (PME) over an RR interval time series to quantify the changes in cardiac activity among multiple emotional states. Electrocardiogram (ECG) signals were recorded under six emotional states (neutral, happiness, sadness, anger, fear, and disgust) in 60 healthy subjects at a rate of 1000 Hz. For each emotional state, ECGs were recorded for 5 min and the RR interval time series was extracted from these ECGs. The obtained results confirm that PE and PME increase significantly during the emotional states of happiness, sadness, anger, and disgust. Both symbolic quantifiers also increase but not in a significant way for the emotional state of fear. Moreover, it is found that PME is more sensitive than PE for discriminating non-neutral from neutral emotional states.Facultad de Ingenierí

    Diagnosis of low-speed bearings via vibration-based entropy indicators and acoustic emissions

    Get PDF
    Tesi del Pla de doctorat industrial de la Generalitat de Catalunya. Tesi en modalitat compendi de publicacions, amb diferents seccions retallades per drets dels editorsWind energy is one ofthe main renewable energies to replace fossil fuels in the generation of electricityworldwide. To enhance and accelerate its implementation at a large scale, it is vital to reduce the costs associated with maintenance. As com ponent breakages force the turbine to stop for long repair times, the wind industry m ust switch from the old-fashioned preventive or corrective maintenance to condition-based maintenance (also called predictive maintenance). The condition­based maintenance of pitch bearings is especiallychallenging, as the operating conditions include high mechanical stress and low rotational speed. Since these operating conditions im pact negatively on the results of the standard methods and techniques applied in current condition-based monitoring systems, the condition-based maintenance of pitch bearings is still a challenge. Therefore, this thes is is focused on the research of novel methods and techniques that obtain reliable information on the state of pitch bearings for condition-based maintenance. lnitially, the acknowledgment ofthe state ofthe art is performed to recognize the methods and signals. This step endorses the decision to analyze the vibration signals and acoustic emissions throughout this thesis. Due to the particular operating conditions of pitch bearings, this research states the need to create data sets to replicate the particular operating conditions in a controlled laboratory experiment. As a res ult, a datas et based on vibrations, and a second datas et based on acoustic emissions are generated. The vibration datas et allows the validation of a novel algorithm for the low-speed bearing diagnosis, which is based on the concept of entropy by the definition of Shannon and Rényi. In com parison to the classical methods found in the literature, the diagnosis of low-speed bearings based on entropy-based indicators can extract more reliable information. Moreover, the research of the com bination of several indicators to improve the diagnosis revea Is that the entropy-based indicators can extract more information than regular indicators used in academia. The datas et of acoustic emissions from low-speed bearings helps to contribute to the development of methods for diagnosis. In this research, the analysis of the energyfrom the signals reveals a dependencyon the intensityand the presence of damage. In addition, a relation between the waveform ofthe analyzed energy and the existence of damage is em phas ized.La energía eólica es una de las principales energías renovables consideradas para reemplazar los combustibles fósiles en la generación de electricidad a nivel mundial. Para mejorar y acelerar su implementación a gran escala, es vital reducir los costes asociados con el mantenimiento. Como las roturas de los componentes obligan a la turbina a detenerse durante largos períodos de reparación, la industria eólica necesita cambiar del anticuado mantenimiento preventiv o correctivo al mantenimiento basado en la condición (también llamado mantenimiento predictivo). El mantenimiento basado en la condición de los rodamientos pitch es especialmente desafiante, porque las condiciones de operación incluyen un alto estrés mecánico y bajas velocidades de rotación. Debido a que estas condiciones de operación impactan negativamente en los resultados de los métodos y técnicas estándar aplicados en los sistemas actuales de monitoreo basados en el estado, el mantenimiento basado en el estado de los rodamientos pitch sigue siendo un desafío. Por tanto, esta tesis se centra en la investigación de métodos y técnicas novedosas que obtengan información fiable sobre el estado de los rodamientos pitch para el mantenimiento basado en la condición. Inicialmente, se realiza el reconocimiento del estado del arte para reconocer los métodos y señales utilizados. Este paso avala la decisión de analizar las señales de vibración y las emisiones acústicas a lo largo de esta tesis. Debido a las condiciones de funcionamiento particulares de los rodamientos pitch, esta investigación reconoce la necesidad de crear un conjunto de datos para replicar las condiciones de funcionamiento particulares del rodamiento pitch en una experiencia de laboratorio controlado. Como resultado, se genera un conjunto de datos basado en vibraciones y un segundo conjunto de datos basado en emisiones acústicas. El conjunto de datos de vibraciones permite la validación de un algoritmo novedoso para el diagnóstico de rodamientos de baja velocidad, el cual se basa en el concepto de la entropía según la definición de Shannon y Rényi. En comparación con los métodos clásicos que se encuentran en la literatura, el diagnóstico de rodamientos de baja velocidad basado en indicadores basados en la entropía puede extraer información más confiable. Además, la investigación de la combinación de varios indicadores para mejorar el diagnóstico revela que los indicadores basados en la entropía pueden extraer más información que los indicadores habituales utilizados en la academia. El conjunto de datos de las emisiones acústicas de los rodamientos de baja velocidad ayuda a contribuir al desarrollo de métodos de diagnóstico. En esta investigación, el análisis de la energía de las señales revela una dependencia de la intensidad y la presencia de daño. Además, se enfatiza una relación entre la forma de onda de la energía analizada y la existencia de daño.L'energia eòlica és una de les principals energies renovables considerades per reemplaçar els combustibles fòssils en la generació d'electricitat a nivell mundial. Per millorar i accelerar la seva implementació a gran escala, és vital reduir els costos associats amb el manteniment. Com els trencaments dels components obliguen a la turbina a aturar-se durant llargs períodes de reparació, la industria eòlica necessita canviar de l'antiquat manteniment preventiu o correctiu al manteniment basat en la condició (també anomenat manteniment predictiu). El manteniment basat en la condició dels rodaments de pas és especialment desafiant, perquè les condicions d’operació inclouen un alt estrès mecànic i baixes velocitats de rotació. A causa de que aquestes condicions d’operació impacten negativament en els resultats dels mètodes i tècniques estàndard aplicats en els sistemes actuals de monitorització basats en l'estat, el manteniment basat en l'estat dels rodaments de pas segueix sent un desafiament. Per tant, aquesta tesi se centra en la investigació de mètodes i tècniques noves que obtinguin informació fiable sobre l'estat dels rodaments de pas per al manteniment basat en la condició. Inicialment, es realitza el reconeixement de l'estat de l'art per reconèixer els mètodes i senyals utilitzats. Aquest pas avala la decisió d'analitzar els senyals de vibració i les emissions acústiques al llarg d'aquesta tesi. A causa de les condicions de funcionament particulars dels rodaments de pas, aquesta investigació reconeix la necessitat de crear un conjunt de dades per replicar les condicions de funcionament particulars del rodament de pas en un experiment de laboratori controlat. Com a resultat, es genera un conjunt de dades basat en vibracions i un segon conjunt de dades basat en emissions acústiques. El conjunt de dades de vibracions permet la validació d'un algoritme nou per al diagnòstic de rodaments de baixa velocitat, el qual es basa en el concepte de l'entropia segons la definició de Shannon i Renyi. En comparació amb els mètodes clàssics que es troben a la literatura, el diagnòstic de rodaments de baixa velocitat basat en indicadors basats en l'entropia pot extreure informació més fiable. A més, la investigació de la combinació de diversos indicadors per millorar el diagnòstic revela que els indicadors basats en l'entropia poden extreure més informació que els indicadors habituals utilitzats en la literatura. El conjunt de dades de les emissions acústiques dels rodaments de baixa velocitat ajuda a contribuir al desenvolupament de mètodes de diagnòstic. En aquesta investigació, l’anàlisi de l'energia de les senyals revela una dependència de la intensitat i la presència de dany. A més, s'emfatitza una relació entre la forma d'ona de l'energia analitzada i l’existència de dany.Energia eolikoa mundu mailan elektrizitatea sortu eta erregai fosilak ordezkatzeko energia berriztagarri nagusietako bat da. Eskala handiko ezarpena hobetu eta bizkortzeko, ezinbestekoa da mantentze-lanekin lotutako kostuak murriztea. Osagaien hausturek turbina konponketa-aldi luzeetan gelditzera behartzen dutenez, industria eolikoak mantentze-lan prebentibo edo zuzentzaile zaharkitutik egoeran oinarritutako mantentzelanetara aldatu behar du (mantentze-lan prediktiboa ere esaten zaio). Pitch errodamenduen egoeran oinarritutako mantentzea bereziki desa atzailea da, tentsio mekaniko handiak jasaten baitituzte eta errotazio-abiadura txikietan egoten baitira abian. Operaziobaldintza horiek eragin negatiboa dutenez egoeran oinarritutako egungo monitorizazio sistemetan erabiltzen diren metodo eta teknika estandarren emaitzetan, pitch errodamenduen egoeran oinarritutako mantentze-lanak erronka bat izaten jarraitzen du. Tesi hau egoeran oinarritutako mantenurako pitch errodamenduen egoerari buruzko informazio dagarria lortzen duten metodo eta teknika berritzaileen ikerketan oinarritzen da. Hasieran, teknologiaren egungo egoera aztertzen da, erabilitako metodoak eta seinaleak ezagutzeko. Urrats honek tesi honetan zehar bibrazio-seinaleak eta emisio akustikoak aztertzeko erabakia bermatzen du. Pitch errodamenduen funtzionamendu baldintza bereziak direla eta, ikerketa honek adierazten du beharrezkoa dela datu multzo bat sortzea pitch errodamenduaren funtzionamendu baldintza partikularrak erreplikatzeko laborategi kontrolatuko testuinguru batean. Ondorioz, bibrazioetan oinarritutako datu-multzo bat eta emisio akustikoetan oinarritutako bigarren datu-multzo bat sortzen dira. Bibrazioen datu-multzoak abiadura txikiko errodamenduen diagnostikorako algoritmo berritzaile bat baliozkotzea ahalbidetzen du, zeina entropiaren kontzeptuan oinarritzen baita Shannon eta R enyiren de nizioaren arabera. Literaturan dauden metodo klasikoekin alderatuta, entropian oinarritutako adierazleek abiadura txikiko errodamenduen diagnostikorako informazio dagarriagoa atera dezakete. Gainera, diagnostikoa hobetzeko hainbat adierazleren konbinazioaren ikerketak agerian uzten du entropian oinarritutako adierazleek akademian erabiltzen diren ohiko adierazleek baino informazio gehiago atera dezaketela. Abiadura txikiko errodamenduen emisio akustikoen datu multzoak diagnostiko metodoak garatzen laguntzen du. Ikerketa lan honetan, seinaleen energiaren azterketak intentsitatearekiko eta kaltearen presentziarekiko dependentzia adierazten du. Gainera, aztertutako energiaren uhin-formaren eta kaltearen arteko erlazioa nabarmentzen da.Postprint (published version

    Advanced Fault Diagnosis and Health Monitoring Techniques for Complex Engineering Systems

    Get PDF
    Over the last few decades, the field of fault diagnostics and structural health management has been experiencing rapid developments. The reliability, availability, and safety of engineering systems can be significantly improved by implementing multifaceted strategies of in situ diagnostics and prognostics. With the development of intelligence algorithms, smart sensors, and advanced data collection and modeling techniques, this challenging research area has been receiving ever-increasing attention in both fundamental research and engineering applications. This has been strongly supported by the extensive applications ranging from aerospace, automotive, transport, manufacturing, and processing industries to defense and infrastructure industries

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    Deep Learning-Based Machinery Fault Diagnostics

    Get PDF
    This book offers a compilation for experts, scholars, and researchers to present the most recent advancements, from theoretical methods to the applications of sophisticated fault diagnosis techniques. The deep learning methods for analyzing and testing complex mechanical systems are of particular interest. Special attention is given to the representation and analysis of system information, operating condition monitoring, the establishment of technical standards, and scientific support of machinery fault diagnosis

    Using the Information Provided by Forbidden Ordinal Patterns in Permutation Entropy to Reinforce Time Series Discrimination Capabilities

    Full text link
    [EN] Despite its widely tested and proven usefulness, there is still room for improvement in the basic permutation entropy (PE) algorithm, as several subsequent studies have demonstrated in recent years. Some of these new methods try to address the well-known PE weaknesses, such as its focus only on ordinal and not on amplitude information, and the possible detrimental impact of equal values found in subsequences. Other new methods address less specific weaknesses, such as the PE results¿ dependence on input parameter values, a common problem found in many entropy calculation methods. The lack of discriminating power among classes in some cases is also a generic problem when entropy measures are used for data series classification. This last problem is the one specifically addressed in the present study. Toward that purpose, the classification performance of the standard PE method was first assessed by conducting several time series classification tests over a varied and diverse set of data. Then, this performance was reassessed using a new Shannon Entropy normalisation scheme proposed in this paper: divide the relative frequencies in PE by the number of different ordinal patterns actually found in the time series, instead of by the theoretically expected number. According to the classification accuracy obtained, this last approach exhibited a higher class discriminating power. It was capable of finding significant differences in six out of seven experimental datasets¿whereas the standard PE method only did in four¿and it also had better classification accuracy. It can be concluded that using the additional information provided by the number of forbidden/found patterns, it is possible to achieve a higher discriminating power than using the classical PE normalisation method. The resulting algorithm is also very similar to that of PE and very easy to implement.Cuesta Frau, D. (2020). Using the Information Provided by Forbidden Ordinal Patterns in Permutation Entropy to Reinforce Time Series Discrimination Capabilities. Entropy. 22(5):1-17. https://doi.org/10.3390/e22050494S117225Bandt, C., & Pompe, B. (2002). Permutation Entropy: A Natural Complexity Measure for Time Series. Physical Review Letters, 88(17). doi:10.1103/physrevlett.88.174102Zanin, M., Zunino, L., Rosso, O. A., & Papo, D. (2012). Permutation Entropy and Its Main Biomedical and Econophysics Applications: A Review. Entropy, 14(8), 1553-1577. doi:10.3390/e14081553Li, J., Yan, J., Liu, X., & Ouyang, G. (2014). Using Permutation Entropy to Measure the Changes in EEG Signals During Absence Seizures. Entropy, 16(6), 3049-3061. doi:10.3390/e16063049Ravelo-García, A., Navarro-Mesa, J., Casanova-Blancas, U., Martin-Gonzalez, S., Quintana-Morales, P., Guerra-Moreno, I., … Hernández-Pérez, E. (2015). Application of the Permutation Entropy over the Heart Rate Variability for the Improvement of Electrocardiogram-based Sleep Breathing Pause Detection. Entropy, 17(3), 914-927. doi:10.3390/e17030914Cuesta-Frau, D., Miró-Martínez, P., Oltra-Crespo, S., Jordán-Núñez, J., Vargas, B., González, P., & Varela-Entrecanales, M. (2018). Model Selection for Body Temperature Signal Classification Using Both Amplitude and Ordinality-Based Entropy Measures. Entropy, 20(11), 853. doi:10.3390/e20110853Cuesta–Frau, D., Miró–Martínez, P., Oltra–Crespo, S., Jordán–Núñez, J., Vargas, B., & Vigil, L. (2018). Classification of glucose records from patients at diabetes risk using a combined permutation entropy algorithm. Computer Methods and Programs in Biomedicine, 165, 197-204. doi:10.1016/j.cmpb.2018.08.018Gao, Y., Villecco, F., Li, M., & Song, W. (2017). Multi-Scale Permutation Entropy Based on Improved LMD and HMM for Rolling Bearing Diagnosis. Entropy, 19(4), 176. doi:10.3390/e19040176Wang, X., Si, S., Wei, Y., & Li, Y. (2019). The Optimized Multi-Scale Permutation Entropy and Its Application in Compound Fault Diagnosis of Rotating Machinery. Entropy, 21(2), 170. doi:10.3390/e21020170Wang, Q. C., Song, W. Q., & Liang, J. K. (2014). Road Flatness Detection Using Permutation Entropy (PE). Applied Mechanics and Materials, 721, 420-423. doi:10.4028/www.scientific.net/amm.721.420Glynn, C. C., & Konstantinou, K. I. (2016). Reduction of randomness in seismic noise as a short-term precursor to a volcanic eruption. Scientific Reports, 6(1). doi:10.1038/srep37733Zhang, Y., & Shang, P. (2017). Permutation entropy analysis of financial time series based on Hill’s diversity number. Communications in Nonlinear Science and Numerical Simulation, 53, 288-298. doi:10.1016/j.cnsns.2017.05.003Fadlallah, B., Chen, B., Keil, A., & Príncipe, J. (2013). Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information. Physical Review E, 87(2). doi:10.1103/physreve.87.022911Xiao-Feng, L., & Yue, W. (2009). Fine-grained permutation entropy as a measure of natural complexity for time series. Chinese Physics B, 18(7), 2690-2695. doi:10.1088/1674-1056/18/7/011Azami, H., & Escudero, J. (2016). Amplitude-aware permutation entropy: Illustration in spike detection and signal segmentation. Computer Methods and Programs in Biomedicine, 128, 40-51. doi:10.1016/j.cmpb.2016.02.008Cuesta–Frau, D. (2019). Permutation entropy: Influence of amplitude information on time series classification performance. Mathematical Biosciences and Engineering, 16(6), 6842-6857. doi:10.3934/mbe.2019342Bian, C., Qin, C., Ma, Q. D. Y., & Shen, Q. (2012). Modified permutation-entropy analysis of heartbeat dynamics. Physical Review E, 85(2). doi:10.1103/physreve.85.021906Cuesta–Frau, D., Varela–Entrecanales, M., Molina–Picó, A., & Vargas, B. (2018). Patterns with Equal Values in Permutation Entropy: Do They Really Matter for Biosignal Classification? Complexity, 2018, 1-15. doi:10.1155/2018/1324696Zunino, L., Olivares, F., Scholkmann, F., & Rosso, O. A. (2017). Permutation entropy based time series analysis: Equalities in the input signal can lead to false conclusions. Physics Letters A, 381(22), 1883-1892. doi:10.1016/j.physleta.2017.03.052Bubble Entropy: An Entropy Almost Free of Parameters. (2017). IEEE Transactions on Biomedical Engineering, 64(11), 2711-2718. doi:10.1109/tbme.2017.2664105Amigó, J. (2010). Permutation Complexity in Dynamical Systems. Springer Series in Synergetics. doi:10.1007/978-3-642-04084-9Amigó, J. M., Kocarev, L., & Szczepanski, J. (2006). Order patterns and chaos. Physics Letters A, 355(1), 27-31. doi:10.1016/j.physleta.2006.01.093Zunino, L., Zanin, M., Tabak, B. M., Pérez, D. G., & Rosso, O. A. (2009). Forbidden patterns, permutation entropy and stock market inefficiency. Physica A: Statistical Mechanics and its Applications, 388(14), 2854-2864. doi:10.1016/j.physa.2009.03.042Little, D. J., & Kane, D. M. (2017). Permutation entropy with vector embedding delays. Physical Review E, 96(6). doi:10.1103/physreve.96.062205Riedl, M., Müller, A., & Wessel, N. (2013). Practical considerations of permutation entropy. The European Physical Journal Special Topics, 222(2), 249-262. doi:10.1140/epjst/e2013-01862-7Rosso, O. A., Carpi, L. C., Saco, P. M., Gómez Ravetti, M., Plastino, A., & Larrondo, H. A. (2012). Causality and the entropy–complexity plane: Robustness and missing ordinal patterns. Physica A: Statistical Mechanics and its Applications, 391(1-2), 42-55. doi:10.1016/j.physa.2011.07.030Cuesta-Frau, D., Murillo-Escobar, J. P., Orrego, D. A., & Delgado-Trejos, E. (2019). Embedded Dimension and Time Series Length. Practical Influence on Permutation Entropy and Its Applications. Entropy, 21(4), 385. doi:10.3390/e21040385KumarSingh, B., Verma, K., & S. Thoke, A. (2015). Investigations on Impact of Feature Normalization Techniques on Classifier's Performance in Breast Tumor Classification. International Journal of Computer Applications, 116(19), 11-15. doi:10.5120/20443-2793Talukder, B., W. Hipel, K., & W. vanLoon, G. (2017). Developing Composite Indicators for Agricultural Sustainability Assessment: Effect of Normalization and Aggregation Techniques. Resources, 6(4), 66. doi:10.3390/resources6040066Tofallis, C. (2014). Add or Multiply? A Tutorial on Ranking and Choosing with Multiple Criteria. INFORMS Transactions on Education, 14(3), 109-119. doi:10.1287/ited.2013.0124Henry, M., & Judge, G. (2019). Permutation Entropy and Information Recovery in Nonlinear Dynamic Economic Time Series. Econometrics, 7(1), 10. doi:10.3390/econometrics7010010Zanin, M. (2008). Forbidden patterns in financial time series. Chaos: An Interdisciplinary Journal of Nonlinear Science, 18(1), 013119. doi:10.1063/1.2841197Cuesta-Frau, D., Molina-Picó, A., Vargas, B., & González, P. (2019). Permutation Entropy: Enhancing Discriminating Power by Using Relative Frequencies Vector of Ordinal Patterns Instead of Their Shannon Entropy. Entropy, 21(10), 1013. doi:10.3390/e21101013Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., & Elger, C. E. (2001). Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E, 64(6). doi:10.1103/physreve.64.061907Bellegdi, S. A., & Arafat, S. M. A. (2017). Automatic Detection of Epilepsy Using EEG Energy and Frequency Bands. International Journal of Applied Mathematics, Electronics and Computers, 1(SpecialIssue), 36-41. doi:10.18100/ijamec.2017specialissue30468Hussain, L., Aziz, W., Alowibdi, J. S., Habib, N., Rafique, M., Saeed, S., & Kazmi, S. Z. H. (2017). Symbolic time series analysis of electroencephalographic (EEG) epileptic seizure and brain dynamics with eye-open and eye-closed subjects during resting states. Journal of Physiological Anthropology, 36(1). doi:10.1186/s40101-017-0136-8Cuesta–Frau, D., Miró–Martínez, P., Jordán Núñez, J., Oltra–Crespo, S., & Molina Picó, A. (2017). Noisy EEG signals classification based on entropy metrics. Performance assessment using first and second generation statistics. Computers in Biology and Medicine, 87, 141-151. doi:10.1016/j.compbiomed.2017.05.028Sharmila, A. (2018). Epilepsy detection from EEG signals: a review. Journal of Medical Engineering & Technology, 42(5), 368-380. doi:10.1080/03091902.2018.1513576Molina-Picó, A., Cuesta-Frau, D., Aboy, M., Crespo, C., Miró-Martínez, P., & Oltra-Crespo, S. (2011). Comparative study of approximate entropy and sample entropy robustness to spikes. Artificial Intelligence in Medicine, 53(2), 97-106. doi:10.1016/j.artmed.2011.06.007Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., … Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23). doi:10.1161/01.cir.101.23.e215Hausdorff, J. M., Purdon, P. L., Peng, C. K., Ladin, Z., Wei, J. Y., & Goldberger, A. L. (1996). Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. Journal of Applied Physiology, 80(5), 1448-1457. doi:10.1152/jappl.1996.80.5.1448Baumert, M., Czippelova, B., Ganesan, A., Schmidt, M., Zaunseder, S., & Javorka, M. (2014). Entropy Analysis of RR and QT Interval Variability during Orthostatic and Mental Stress in Healthy Subjects. Entropy, 16(12), 6384-6393. doi:10.3390/e16126384Xia, Y., Yang, L., Zunino, L., Shi, H., Zhuang, Y., & Liu, C. (2018). Application of Permutation Entropy and Permutation Min-Entropy in Multiple Emotional States Analysis of RRI Time Series. Entropy, 20(3), 148. doi:10.3390/e20030148Iyengar, N., Peng, C. K., Morin, R., Goldberger, A. L., & Lipsitz, L. A. (1996). Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 271(4), R1078-R1084. doi:10.1152/ajpregu.1996.271.4.r1078Liu, C., Li, K., Zhao, L., Liu, F., Zheng, D., Liu, C., & Liu, S. (2013). Analysis of heart rate variability using fuzzy measure entropy. Computers in Biology and Medicine, 43(2), 100-108. doi:10.1016/j.compbiomed.2012.11.005Bugenhagen, S. M., Cowley, A. W., & Beard, D. A. (2010). Identifying physiological origins of baroreflex dysfunction in salt-sensitive hypertension in the Dahl SS rat. Physiological Genomics, 42(1), 23-41. doi:10.1152/physiolgenomics.00027.2010Bagnall, A., Lines, J., Bostrom, A., Large, J., & Keogh, E. (2016). The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Mining and Knowledge Discovery, 31(3), 606-660. doi:10.1007/s10618-016-0483-9Yemini, E., Jucikas, T., Grundy, L. J., Brown, A. E. X., & Schafer, W. R. (2013). A database of Caenorhabditis elegans behavioral phenotypes. Nature Methods, 10(9), 877-879. doi:10.1038/nmeth.2560Brown, A. E. X., Yemini, E. I., Grundy, L. J., Jucikas, T., & Schafer, W. R. (2012). A dictionary of behavioral motifs reveals clusters of genes affecting Caenorhabditis elegans locomotion. Proceedings of the National Academy of Sciences, 110(2), 791-796. doi:10.1073/pnas.1211447110Cuesta-Frau, D., Novák, D., Burda, V., Molina-Picó, A., Vargas, B., Mraz, M., … Haluzik, M. (2018). Characterization of Artifact Influence on the Classification of Glucose Time Series Using Sample Entropy Statistics. Entropy, 20(11), 871. doi:10.3390/e20110871Bürkner, P.-C., Doebler, P., & Holling, H. (2016). Optimal design of the Wilcoxon-Mann-Whitney-test. Biometrical Journal, 59(1), 25-40. doi:10.1002/bimj.201600022Bian, Z., Ouyang, G., Li, Z., Li, Q., Wang, L., & Li, X. (2016). Weighted-Permutation Entropy Analysis of Resting State EEG from Diabetics with Amnestic Mild Cognitive Impairment. Entropy, 18(8), 307. doi:10.3390/e18080307Deng, B., Liang, L., Li, S., Wang, R., Yu, H., Wang, J., & Wei, X. (2015). Complexity extraction of electroencephalograms in Alzheimer’s disease with weighted-permutation entropy. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(4), 043105. doi:10.1063/1.491701

    Slope Entropy: A New Time Series Complexity Estimator Based on Both Symbolic Patterns and Amplitude Information

    Full text link
    [EN] The development of new measures and algorithms to quantify the entropy or related concepts of a data series is a continuous effort that has brought many innovations in this regard in recent years. The ultimate goal is usually to find new methods with a higher discriminating power, more efficient, more robust to noise and artifacts, less dependent on parameters or configurations, or any other possibly desirable feature. Among all these methods, Permutation Entropy (PE) is a complexity estimator for a time series that stands out due to its many strengths, with very few weaknesses. One of these weaknesses is the PE's disregarding of time series amplitude information. Some PE algorithm modifications have been proposed in order to introduce such information into the calculations. We propose in this paper a new method, Slope Entropy (SlopEn), that also addresses this flaw but in a different way, keeping the symbolic representation of subsequences using a novel encoding method based on the slope generated by two consecutive data samples. By means of a thorough and extensive set of comparative experiments with PE and Sample Entropy (SampEn), we demonstrate that SlopEn is a very promising method with clearly a better time series classification performance than those previous methods.Cuesta Frau, D. (2019). Slope Entropy: A New Time Series Complexity Estimator Based on Both Symbolic Patterns and Amplitude Information. Entropy. 21(12):1-22. https://doi.org/10.3390/e21121167S1222112Kannathal, N., Choo, M. L., Acharya, U. R., & Sadasivan, P. K. (2005). Entropies for detection of epilepsy in EEG. Computer Methods and Programs in Biomedicine, 80(3), 187-194. doi:10.1016/j.cmpb.2005.06.012Abásolo, D., Hornero, R., Espino, P., Álvarez, D., & Poza, J. (2006). Entropy analysis of the EEG background activity in Alzheimer’s disease patients. Physiological Measurement, 27(3), 241-253. doi:10.1088/0967-3334/27/3/003Pincus, S. M., Gladstone, I. M., & Ehrenkranz, R. A. (1991). A regularity statistic for medical data analysis. Journal of Clinical Monitoring, 7(4), 335-345. doi:10.1007/bf01619355Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences, 88(6), 2297-2301. doi:10.1073/pnas.88.6.2297Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, 52(1-2), 479-487. doi:10.1007/bf01016429Sinai, Y. G. (1988). About A. N. Kolmogorov’s work on the entropy of dynamical systems. Ergodic Theory and Dynamical Systems, 8(4), 501-502. doi:10.1017/s0143385700004648Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049. doi:10.1152/ajpheart.2000.278.6.h2039Simons, S., Abasolo, D., & Escudero, J. (2015). Classification of Alzheimer’s disease from quadratic sample entropy of electroencephalogram. Healthcare Technology Letters, 2(3), 70-73. doi:10.1049/htl.2014.0106Simons, S., Espino, P., & Abásolo, D. (2018). Fuzzy Entropy Analysis of the Electroencephalogram in Patients with Alzheimer’s Disease: Is the Method Superior to Sample Entropy? Entropy, 20(1), 21. doi:10.3390/e20010021Cuesta-Frau, D., Novák, D., Burda, V., Molina-Picó, A., Vargas, B., Mraz, M., … Haluzik, M. (2018). Characterization of Artifact Influence on the Classification of Glucose Time Series Using Sample Entropy Statistics. Entropy, 20(11), 871. doi:10.3390/e20110871Sheng Lu, Xinnian Chen, Kanters, J. K., Solomon, I. C., & Chon, K. H. (2008). Automatic Selection of the Threshold Value rr for Approximate Entropy. IEEE Transactions on Biomedical Engineering, 55(8), 1966-1972. doi:10.1109/tbme.2008.919870Costa, M., Goldberger, A. L., & Peng, C.-K. (2005). Multiscale entropy analysis of biological signals. Physical Review E, 71(2). doi:10.1103/physreve.71.021906Wu, S.-D., Wu, C.-W., Lin, S.-G., Lee, K.-Y., & Peng, C.-K. (2014). Analysis of complex time series using refined composite multiscale entropy. Physics Letters A, 378(20), 1369-1374. doi:10.1016/j.physleta.2014.03.034Bandt, C., & Pompe, B. (2002). Permutation Entropy: A Natural Complexity Measure for Time Series. Physical Review Letters, 88(17). doi:10.1103/physrevlett.88.174102Aboy, M., Hornero, R., Abasolo, D., & Alvarez, D. (2006). Interpretation of the Lempel-Ziv Complexity Measure in the Context of Biomedical Signal Analysis. IEEE Transactions on Biomedical Engineering, 53(11), 2282-2288. doi:10.1109/tbme.2006.883696Cuesta-Frau, D., Murillo-Escobar, J. P., Orrego, D. A., & Delgado-Trejos, E. (2019). Embedded Dimension and Time Series Length. Practical Influence on Permutation Entropy and Its Applications. Entropy, 21(4), 385. doi:10.3390/e21040385Li, D., Liang, Z., Wang, Y., Hagihira, S., Sleigh, J. W., & Li, X. (2012). Parameter selection in permutation entropy for an electroencephalographic measure of isoflurane anesthetic drug effect. Journal of Clinical Monitoring and Computing, 27(2), 113-123. doi:10.1007/s10877-012-9419-0Cuesta–Frau, D., Varela–Entrecanales, M., Molina–Picó, A., & Vargas, B. (2018). Patterns with Equal Values in Permutation Entropy: Do They Really Matter for Biosignal Classification? Complexity, 2018, 1-15. doi:10.1155/2018/1324696Riedl, M., Müller, A., & Wessel, N. (2013). Practical considerations of permutation entropy. The European Physical Journal Special Topics, 222(2), 249-262. doi:10.1140/epjst/e2013-01862-7Zunino, L., Olivares, F., Scholkmann, F., & Rosso, O. A. (2017). Permutation entropy based time series analysis: Equalities in the input signal can lead to false conclusions. Physics Letters A, 381(22), 1883-1892. doi:10.1016/j.physleta.2017.03.052Liu, T., Yao, W., Wu, M., Shi, Z., Wang, J., & Ning, X. (2017). Multiscale permutation entropy analysis of electrocardiogram. Physica A: Statistical Mechanics and its Applications, 471, 492-498. doi:10.1016/j.physa.2016.11.102Gao, Y., Villecco, F., Li, M., & Song, W. (2017). Multi-Scale Permutation Entropy Based on Improved LMD and HMM for Rolling Bearing Diagnosis. Entropy, 19(4), 176. doi:10.3390/e19040176Azami, H., & Escudero, J. (2016). Amplitude-aware permutation entropy: Illustration in spike detection and signal segmentation. Computer Methods and Programs in Biomedicine, 128, 40-51. doi:10.1016/j.cmpb.2016.02.008Fadlallah, B., Chen, B., Keil, A., & Príncipe, J. (2013). Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information. Physical Review E, 87(2). doi:10.1103/physreve.87.022911Xiao-Feng, L., & Yue, W. (2009). Fine-grained permutation entropy as a measure of natural complexity for time series. Chinese Physics B, 18(7), 2690-2695. doi:10.1088/1674-1056/18/7/011Cuesta–Frau, D. (2019). Permutation entropy: Influence of amplitude information on time series classification performance. Mathematical Biosciences and Engineering, 16(6), 6842-6857. doi:10.3934/mbe.2019342Koski, A., Juhola, M., & Meriste, M. (1995). Syntactic recognition of ECG signals by attributed finite automata. Pattern Recognition, 28(12), 1927-1940. doi:10.1016/0031-3203(95)00052-6Koski, A. (1996). Primitive coding of structural ECG features. Pattern Recognition Letters, 17(11), 1215-1222. doi:10.1016/0167-8655(96)00079-7Lake, D. E., Richman, J. S., Griffin, M. P., & Moorman, J. R. (2002). Sample entropy analysis of neonatal heart rate variability. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 283(3), R789-R797. doi:10.1152/ajpregu.00069.2002Wessel, N., Ziehmann, C., Kurths, J., Meyerfeldt, U., Schirdewan, A., & Voss, A. (2000). Short-term forecasting of life-threatening cardiac arrhythmias based on symbolic dynamics and finite-time growth rates. Physical Review E, 61(1), 733-739. doi:10.1103/physreve.61.733Cysarz, D., Lange, S., Matthiessen, P. F., & Leeuwen, P. van. (2007). Regular heartbeat dynamics are associated with cardiac health. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 292(1), R368-R372. doi:10.1152/ajpregu.00161.2006Cuesta-Frau, D., Molina-Picó, A., Vargas, B., & González, P. (2019). Permutation Entropy: Enhancing Discriminating Power by Using Relative Frequencies Vector of Ordinal Patterns Instead of Their Shannon Entropy. Entropy, 21(10), 1013. doi:10.3390/e21101013Mayer, C. C., Bachler, M., Hörtenhuber, M., Stocker, C., Holzinger, A., & Wassertheurer, S. (2014). Selection of entropy-measure parameters for knowledge discovery in heart rate variability data. BMC Bioinformatics, 15(S6). doi:10.1186/1471-2105-15-s6-s2Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., … Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23). doi:10.1161/01.cir.101.23.e215Iyengar, N., Peng, C. K., Morin, R., Goldberger, A. L., & Lipsitz, L. A. (1996). Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 271(4), R1078-R1084. doi:10.1152/ajpregu.1996.271.4.r1078Bagnall, A., Lines, J., Bostrom, A., Large, J., & Keogh, E. (2016). The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Mining and Knowledge Discovery, 31(3), 606-660. doi:10.1007/s10618-016-0483-9Flood, M. W., Jensen, B. R., Malling, A.-S., & Lowery, M. M. (2019). Increased EMG intermuscular coherence and reduced signal complexity in Parkinson’s disease. Clinical Neurophysiology, 130(2), 259-269. doi:10.1016/j.clinph.2018.10.023Tang, X., Zhang, X., Gao, X., Chen, X., & Zhou, P. (2018). A Novel Interpretation of Sample Entropy in Surface Electromyographic Examination of Complex Neuromuscular Alternations in Subacute and Chronic Stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(9), 1878-1888. doi:10.1109/tnsre.2018.2864317Zhu, X., Zhang, X., Tang, X., Gao, X., & Chen, X. (2017). Re-Evaluating Electromyogram–Force Relation in Healthy Biceps Brachii Muscles Using Complexity Measures. Entropy, 19(11), 624. doi:10.3390/e19110624Bingham, A., Arjunan, S., Jelfs, B., & Kumar, D. (2017). Normalised Mutual Information of High-Density Surface Electromyography during Muscle Fatigue. Entropy, 19(12), 697. doi:10.3390/e19120697Montesinos, L., Castaldo, R., & Pecchia, L. (2018). On the use of approximate entropy and sample entropy with centre of pressure time-series. Journal of NeuroEngineering and Rehabilitation, 15(1). doi:10.1186/s12984-018-0465-9Bubble Entropy: An Entropy Almost Free of Parameters. (2017). IEEE Transactions on Biomedical Engineering, 64(11), 2711-2718. doi:10.1109/tbme.2017.2664105Li, D., Li, X., Liang, Z., Voss, L. J., & Sleigh, J. W. (2010). Multiscale permutation entropy analysis of EEG recordings during sevoflurane anesthesia. Journal of Neural Engineering, 7(4), 046010. doi:10.1088/1741-2560/7/4/046010Costa, M., Goldberger, A. L., & Peng, C.-K. (2002). Multiscale Entropy Analysis of Complex Physiologic Time Series. Physical Review Letters, 89(6). doi:10.1103/physrevlett.89.068102Hari, V. N., Anand, G. V., Premkumar, A. B., & Madhukumar, A. S. (2012). Design and performance analysis of a signal detector based on suprathreshold stochastic resonance. Signal Processing, 92(7), 1745-1757. doi:10.1016/j.sigpro.2012.01.01
    corecore