4,829 research outputs found

    Dynamic Graph CNN for Learning on Point Clouds

    Full text link
    Point clouds provide a flexible geometric representation suitable for countless applications in computer graphics; they also comprise the raw output of most 3D data acquisition devices. While hand-designed features on point clouds have long been proposed in graphics and vision, however, the recent overwhelming success of convolutional neural networks (CNNs) for image analysis suggests the value of adapting insight from CNN to the point cloud world. Point clouds inherently lack topological information so designing a model to recover topology can enrich the representation power of point clouds. To this end, we propose a new neural network module dubbed EdgeConv suitable for CNN-based high-level tasks on point clouds including classification and segmentation. EdgeConv acts on graphs dynamically computed in each layer of the network. It is differentiable and can be plugged into existing architectures. Compared to existing modules operating in extrinsic space or treating each point independently, EdgeConv has several appealing properties: It incorporates local neighborhood information; it can be stacked applied to learn global shape properties; and in multi-layer systems affinity in feature space captures semantic characteristics over potentially long distances in the original embedding. We show the performance of our model on standard benchmarks including ModelNet40, ShapeNetPart, and S3DIS

    Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review

    Full text link
    Recently, the advancement of deep learning in discriminative feature learning from 3D LiDAR data has led to rapid development in the field of autonomous driving. However, automated processing uneven, unstructured, noisy, and massive 3D point clouds is a challenging and tedious task. In this paper, we provide a systematic review of existing compelling deep learning architectures applied in LiDAR point clouds, detailing for specific tasks in autonomous driving such as segmentation, detection, and classification. Although several published research papers focus on specific topics in computer vision for autonomous vehicles, to date, no general survey on deep learning applied in LiDAR point clouds for autonomous vehicles exists. Thus, the goal of this paper is to narrow the gap in this topic. More than 140 key contributions in the recent five years are summarized in this survey, including the milestone 3D deep architectures, the remarkable deep learning applications in 3D semantic segmentation, object detection, and classification; specific datasets, evaluation metrics, and the state of the art performance. Finally, we conclude the remaining challenges and future researches.Comment: 21 pages, submitted to IEEE Transactions on Neural Networks and Learning System

    PointConv: Deep Convolutional Networks on 3D Point Clouds

    Full text link
    Unlike images which are represented in regular dense grids, 3D point clouds are irregular and unordered, hence applying convolution on them can be difficult. In this paper, we extend the dynamic filter to a new convolution operation, named PointConv. PointConv can be applied on point clouds to build deep convolutional networks. We treat convolution kernels as nonlinear functions of the local coordinates of 3D points comprised of weight and density functions. With respect to a given point, the weight functions are learned with multi-layer perceptron networks and density functions through kernel density estimation. The most important contribution of this work is a novel reformulation proposed for efficiently computing the weight functions, which allowed us to dramatically scale up the network and significantly improve its performance. The learned convolution kernel can be used to compute translation-invariant and permutation-invariant convolution on any point set in the 3D space. Besides, PointConv can also be used as deconvolution operators to propagate features from a subsampled point cloud back to its original resolution. Experiments on ModelNet40, ShapeNet, and ScanNet show that deep convolutional neural networks built on PointConv are able to achieve state-of-the-art on challenging semantic segmentation benchmarks on 3D point clouds. Besides, our experiments converting CIFAR-10 into a point cloud showed that networks built on PointConv can match the performance of convolutional networks in 2D images of a similar structure

    3D Point Cloud Generative Adversarial Network Based on Tree Structured Graph Convolutions

    Full text link
    In this paper, we propose a novel generative adversarial network (GAN) for 3D point clouds generation, which is called tree-GAN. To achieve state-of-the-art performance for multi-class 3D point cloud generation, a tree-structured graph convolution network (TreeGCN) is introduced as a generator for tree-GAN. Because TreeGCN performs graph convolutions within a tree, it can use ancestor information to boost the representation power for features. To evaluate GANs for 3D point clouds accurately, we develop a novel evaluation metric called Frechet point cloud distance (FPD). Experimental results demonstrate that the proposed tree-GAN outperforms state-of-the-art GANs in terms of both conventional metrics and FPD, and can generate point clouds for different semantic parts without prior knowledge.Comment: 10 page

    Octree guided CNN with Spherical Kernels for 3D Point Clouds

    Full text link
    We propose an octree guided neural network architecture and spherical convolutional kernel for machine learning from arbitrary 3D point clouds. The network architecture capitalizes on the sparse nature of irregular point clouds, and hierarchically coarsens the data representation with space partitioning. At the same time, the proposed spherical kernels systematically quantize point neighborhoods to identify local geometric structures in the data, while maintaining the properties of translation-invariance and asymmetry. We specify spherical kernels with the help of network neurons that in turn are associated with spatial locations. We exploit this association to avert dynamic kernel generation during network training that enables efficient learning with high resolution point clouds. The effectiveness of the proposed technique is established on the benchmark tasks of 3D object classification and segmentation, achieving new state-of-the-art on ShapeNet and RueMonge2014 datasets.Comment: Accepted in IEEE CVPR 2019. arXiv admin note: substantial text overlap with arXiv:1805.0787

    Permutation Matters: Anisotropic Convolutional Layer for Learning on Point Clouds

    Full text link
    It has witnessed a growing demand for efficient representation learning on point clouds in many 3D computer vision applications. Behind the success story of convolutional neural networks (CNNs) is that the data (e.g., images) are Euclidean structured. However, point clouds are irregular and unordered. Various point neural networks have been developed with isotropic filters or using weighting matrices to overcome the structure inconsistency on point clouds. However, isotropic filters or weighting matrices limit the representation power. In this paper, we propose a permutable anisotropic convolutional operation (PAI-Conv) that calculates soft-permutation matrices for each point using dot-product attention according to a set of evenly distributed kernel points on a sphere's surface and performs shared anisotropic filters. In fact, dot product with kernel points is by analogy with the dot-product with keys in Transformer as widely used in natural language processing (NLP). From this perspective, PAI-Conv can be regarded as the transformer for point clouds, which is physically meaningful and is robust to cooperate with the efficient random point sampling method. Comprehensive experiments on point clouds demonstrate that PAI-Conv produces competitive results in classification and semantic segmentation tasks compared to state-of-the-art methods

    MeshCNN: A Network with an Edge

    Full text link
    Polygonal meshes provide an efficient representation for 3D shapes. They explicitly capture both shape surface and topology, and leverage non-uniformity to represent large flat regions as well as sharp, intricate features. This non-uniformity and irregularity, however, inhibits mesh analysis efforts using neural networks that combine convolution and pooling operations. In this paper, we utilize the unique properties of the mesh for a direct analysis of 3D shapes using MeshCNN, a convolutional neural network designed specifically for triangular meshes. Analogous to classic CNNs, MeshCNN combines specialized convolution and pooling layers that operate on the mesh edges, by leveraging their intrinsic geodesic connections. Convolutions are applied on edges and the four edges of their incident triangles, and pooling is applied via an edge collapse operation that retains surface topology, thereby, generating new mesh connectivity for the subsequent convolutions. MeshCNN learns which edges to collapse, thus forming a task-driven process where the network exposes and expands the important features while discarding the redundant ones. We demonstrate the effectiveness of our task-driven pooling on various learning tasks applied to 3D meshes.Comment: For a two-minute explanation video see https://bit.ly/meshcnnvide

    SAWNet: A Spatially Aware Deep Neural Network for 3D Point Cloud Processing

    Full text link
    Deep neural networks have established themselves as the state-of-the-art methodology in almost all computer vision tasks to date. But their application to processing data lying on non-Euclidean domains is still a very active area of research. One such area is the analysis of point cloud data which poses a challenge due to its lack of order. Many recent techniques have been proposed, spearheaded by the PointNet architecture. These techniques use either global or local information from the point clouds to extract a latent representation for the points, which is then used for the task at hand (classification/segmentation). In our work, we introduce a neural network layer that combines both global and local information to produce better embeddings of these points. We enhance our architecture with residual connections, to pass information between the layers, which also makes the network easier to train. We achieve state-of-the-art results on the ModelNet40 dataset with our architecture, and our results are also highly competitive with the state-of-the-art on the ShapeNet part segmentation dataset and the indoor scene segmentation dataset. We plan to open source our pre-trained models on github to encourage the research community to test our networks on their data, or simply use them for benchmarking purposes

    ConvPoint: Continuous Convolutions for Point Cloud Processing

    Full text link
    Point clouds are unstructured and unordered data, as opposed to images. Thus, most machine learning approach developed for image cannot be directly transferred to point clouds. In this paper, we propose a generalization of discrete convolutional neural networks (CNNs) in order to deal with point clouds by replacing discrete kernels by continuous ones. This formulation is simple, allows arbitrary point cloud sizes and can easily be used for designing neural networks similarly to 2D CNNs. We present experimental results with various architectures, highlighting the flexibility of the proposed approach. We obtain competitive results compared to the state-of-the-art on shape classification, part segmentation and semantic segmentation for large-scale point clouds.Comment: 12 page

    RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds

    Full text link
    We study the problem of efficient semantic segmentation for large-scale 3D point clouds. By relying on expensive sampling techniques or computationally heavy pre/post-processing steps, most existing approaches are only able to be trained and operate over small-scale point clouds. In this paper, we introduce RandLA-Net, an efficient and lightweight neural architecture to directly infer per-point semantics for large-scale point clouds. The key to our approach is to use random point sampling instead of more complex point selection approaches. Although remarkably computation and memory efficient, random sampling can discard key features by chance. To overcome this, we introduce a novel local feature aggregation module to progressively increase the receptive field for each 3D point, thereby effectively preserving geometric details. Extensive experiments show that our RandLA-Net can process 1 million points in a single pass with up to 200X faster than existing approaches. Moreover, our RandLA-Net clearly surpasses state-of-the-art approaches for semantic segmentation on two large-scale benchmarks Semantic3D and SemanticKITTI.Comment: CVPR 2020 Oral. Code and data are available at: https://github.com/QingyongHu/RandLA-Ne
    • …
    corecore