543 research outputs found

    Total Recall: Understanding Traffic Signs using Deep Hierarchical Convolutional Neural Networks

    Full text link
    Recognizing Traffic Signs using intelligent systems can drastically reduce the number of accidents happening world-wide. With the arrival of Self-driving cars it has become a staple challenge to solve the automatic recognition of Traffic and Hand-held signs in the major streets. Various machine learning techniques like Random Forest, SVM as well as deep learning models has been proposed for classifying traffic signs. Though they reach state-of-the-art performance on a particular data-set, but fall short of tackling multiple Traffic Sign Recognition benchmarks. In this paper, we propose a novel and one-for-all architecture that aces multiple benchmarks with better overall score than the state-of-the-art architectures. Our model is made of residual convolutional blocks with hierarchical dilated skip connections joined in steps. With this we score 99.33% Accuracy in German sign recognition benchmark and 99.17% Accuracy in Belgian traffic sign classification benchmark. Moreover, we propose a newly devised dilated residual learning representation technique which is very low in both memory and computational complexity

    Fast LIDAR-based Road Detection Using Fully Convolutional Neural Networks

    Full text link
    In this work, a deep learning approach has been developed to carry out road detection using only LIDAR data. Starting from an unstructured point cloud, top-view images encoding several basic statistics such as mean elevation and density are generated. By considering a top-view representation, road detection is reduced to a single-scale problem that can be addressed with a simple and fast fully convolutional neural network (FCN). The FCN is specifically designed for the task of pixel-wise semantic segmentation by combining a large receptive field with high-resolution feature maps. The proposed system achieved excellent performance and it is among the top-performing algorithms on the KITTI road benchmark. Its fast inference makes it particularly suitable for real-time applications

    DADFNet: Dual Attention and Dual Frequency-Guided Dehazing Network for Video-Empowered Intelligent Transportation

    Full text link
    Visual surveillance technology is an indispensable functional component of advanced traffic management systems. It has been applied to perform traffic supervision tasks, such as object detection, tracking and recognition. However, adverse weather conditions, e.g., fog, haze and mist, pose severe challenges for video-based transportation surveillance. To eliminate the influences of adverse weather conditions, we propose a dual attention and dual frequency-guided dehazing network (termed DADFNet) for real-time visibility enhancement. It consists of a dual attention module (DAM) and a high-low frequency-guided sub-net (HLFN) to jointly consider the attention and frequency mapping to guide haze-free scene reconstruction. Extensive experiments on both synthetic and real-world images demonstrate the superiority of DADFNet over state-of-the-art methods in terms of visibility enhancement and improvement in detection accuracy. Furthermore, DADFNet only takes 6.36.3 ms to process a 1,920 * 1,080 image on the 2080 Ti GPU, making it highly efficient for deployment in intelligent transportation systems.Comment: This paper is accepted by AAAI 2022 Workshop: AI for Transportatio

    PASS: Panoramic Annular Semantic Segmentation

    Get PDF
    Pixel-wise semantic segmentation is capable of unifying most of driving scene perception tasks, and has enabled striking progress in the context of navigation assistance, where an entire surrounding sensing is vital. However, current mainstream semantic segmenters are predominantly benchmarked against datasets featuring narrow Field of View (FoV), and a large part of vision-based intelligent vehicles use only a forward-facing camera. In this paper, we propose a Panoramic Annular Semantic Segmentation (PASS) framework to perceive the whole surrounding based on a compact panoramic annular lens system and an online panorama unfolding process. To facilitate the training of PASS models, we leverage conventional FoV imaging datasets, bypassing the efforts entailed to create fully dense panoramic annotations. To consistently exploit the rich contextual cues in the unfolded panorama, we adapt our real-time ERF-PSPNet to predict semantically meaningful feature maps in different segments, and fuse them to fulfill panoramic scene parsing. The innovation lies in the network adaptation to enable smooth and seamless segmentation, combined with an extended set of heterogeneous data augmentations to attain robustness in panoramic imagery. A comprehensive variety of experiments demonstrates the effectiveness for real-world surrounding perception in a single PASS, while the adaptation proposal is exceptionally positive for state-of-the-art efficient networks.Ministerio de EconomĂ­a y CompetitividadComunidad de Madri
    • …
    corecore