43 research outputs found

    A review of hyperspectral imaging-based plastic waste detection state-of-the-arts

    Get PDF
    Plastic waste issues emerged from the build-up of plastics that negatively impacts the environment. As a result, plastic waste detection is proposed in many research studies to tackle the problems. Therefore, this paper aims to review hyperspectral imaging techniques and machine learning in plastic waste detection. Hyperspectral imaging techniques are found to be effective in detecting plastic waste and microplastics as they were able to capture plastic reflectance spectral by using the near-infrared sensor. However, the review also shows that hyperspectral imaging techniques were less efficient in capturing the electromagnetic spectrum of black plastics due to carbon-black absorption properties. Carbon-black strongly absorbs light in the ultraviolet and infrared spectral range of the electromagnetic spectrum, therefore not detected by the near-infrared sensor. This paper also reviews how machine learning can alternatively detect and sort all types of waste, including plastics. Multiple studies show that the machine learning model achieved good accuracy in detecting all types of plastics based on the waste dataset. Finally, it can be seen that the spectral information of plastic can be used as feature extraction for machine learning models for better plastic detection. It is hoped that this study will contribute to more systematic research on the same topic

    Can We "Sense" the Call of The Ocean? Current Advances in Remote Sensing Computational Imaging for Marine Debris Monitoring

    Get PDF
    Especially due to the unconscious use of petroleum products, the ocean faces a potential danger: plastic pollution\textit{plastic pollution}. Plastic pollutes not only the ocean but also directly the air and foods whilst endangering the ocean wild-life due to the ingestion and entanglements. Especially, during the last decade, public initiatives and academic institutions have spent an enormous time on finding possible solutions to marine plastic pollution. Remote sensing imagery sits in a crucial place for these efforts since it provides highly informative earth observation products. Despite this, detection, and monitoring of the marine environment in the context of plastic pollution is still in its early stages and the current technology offers possible important development for the computational efforts. This paper contributes to the literature with a thorough and rich review and aims to highlight notable literature milestones in marine debris monitoring applications by promoting the computational imaging methodology behind these approaches.Comment: 25 pages, 11 figure

    A Multi-Level Approach to Waste Object Segmentation

    Full text link
    We address the problem of localizing waste objects from a color image and an optional depth image, which is a key perception component for robotic interaction with such objects. Specifically, our method integrates the intensity and depth information at multiple levels of spatial granularity. Firstly, a scene-level deep network produces an initial coarse segmentation, based on which we select a few potential object regions to zoom in and perform fine segmentation. The results of the above steps are further integrated into a densely connected conditional random field that learns to respect the appearance, depth, and spatial affinities with pixel-level accuracy. In addition, we create a new RGBD waste object segmentation dataset, MJU-Waste, that is made public to facilitate future research in this area. The efficacy of our method is validated on both MJU-Waste and the Trash Annotation in Context (TACO) dataset.Comment: Paper appears in Sensors 2020, 20(14), 381

    Time to Stem Lightweight Approaches and Focus on Real Minefield Data?

    Get PDF
    While preparing for airborne IR thermography fieldwork as part of the Odyssey2025 Project between Humanity & Inclusion and Mobility Robotics in Chad, a comprehensive literature study was conducted by the authors From the literature reviewed, the authors identified a disconnect between thermography-related research projects and practical, real-world HMA operations. The importance of real fieldwork, the significance of undergoing a literature review before starting your own research, and the need for researchers to work in conjunction with HMA operators are all essential, not only to those working in HMA, but more importantly, to the post-conflict communities the sector strives to help

    Automatic detection and quantification of floating marine macro-litter in aerial images: introducing a novel deep learning approach connected to a web application in R

    Full text link
    The threats posed by floating marine macro-litter (FMML) of anthropogenic origin to the marine fauna, and marine ecosystems in general, are universally recognized. Dedicated monitoring programmes and mitigation measures are in place to address this issue worldwide, with the increasing support of new technologies and the automation of analytical processes. In the current study, we developed algorithms capable of detecting and quantifying FMML in aerial images, and a web-oriented application that allows users to identify FMML within images of the sea surface. The proposed algorithm is based on a deep learning approach that uses convolutional neural networks (CNNs) capable of learning from unstructured or unlabelled data. The CNN-based deep learning model was trained and tested using 3723 aerial images (50% containing FMML, 50% without FMML) taken by drones and aircraft over the waters of the NW Mediterranean Sea. The accuracies of image classification (performed using all the images for training and testing the model) and cross-validation (performed using 90% of images for training and 10% for testing) were 0.85 and 0.81, respectively. The Shiny package of R was then used to develop a user-friendly application to identify and quantify FMML within the aerial images. The implementation of this, and similar algorithms, allows streamlining substantially the detection and quantification of FMML, providing support to the monitoring and assessment of this environmental threat. However, the automated monitoring of FMML in the open sea still represents a technological challenge, and further research is needed to improve the accuracy of current algorithms

    Automatic detection and quantification of floating marine macro-litter in aerial images: Introducing a novel deep learning approach connected to a web application in R

    Get PDF
    The threats posed by floating marine macro-litter (FMML) of anthropogenic origin to the marine fauna, and marine ecosystems in general, are universally recognized. Dedicated monitoring programmes and mitigation measures are in place to address this issue worldwide, with the increasing support of new technologies and the automation of analytical processes. In the current study, we developed algorithms capable of detecting and quantifying FMML in aerial images, and a web-oriented application that allows users to identify FMML within images of the sea surface. The proposed algorithm is based on a deep learning approach that uses convolutional neural networks (CNNs) capable of learning from unstructured or unlabelled data. The CNN-based deep learning model was trained and tested using 3723 aerial images (50% containing FMML, 50% without FMML) taken by drones and aircraft over the waters of the NW Mediterranean Sea. The accuracies of image classification (performed using all the images for training and testing the model) and cross-validation (performed using 90% of images for training and 10% for testing) were 0.85 and 0.81, respectively. The Shiny package of R was then used to develop a user-friendly application to identify and quantify FMML within the aerial images. The implementation of this, and similar algorithms, allows streamlining substantially the detection and quantification of FMML, providing support to the monitoring and assessment of this environmental threat. However, the automated monitoring of FMML in the open sea still represents a technological challenge, and further research is needed to improve the accuracy of current algorithms.Peer ReviewedPostprint (published version

    Mask R-CNN and OBIA Fusion Improves the Segmentation of Scattered Vegetation in Very High-Resolution Optical Sensors

    Get PDF
    This research was funded by the European Research Council (ERC Grant agreement 647038 [BIODESERT]), the European LIFE Project ADAPTAMED LIFE14 CCA/ES/000612, the RH2OARID (P18-RT-5130) and RESISTE (P18-RT-1927) funded by Consejeria de Economia, Conocimiento, Empresas y Universidad from the Junta de Andalucia, and by projects A-TIC-458-UGR18 and DETECTOR (A-RNM-256-UGR18), with the contribution of the European Union Funds for Regional Development. E.R-C was supported by the HIPATIA-UAL fellowship, founded by the University of Almeria. S.T. is supported by the Ramon y Cajal Program of the Spanish Government (RYC-201518136).Vegetation generally appears scattered in drylands. Its structure, composition and spatial patterns are key controls of biotic interactions, water, and nutrient cycles. Applying segmentation methods to very high-resolution images for monitoring changes in vegetation cover can provide relevant information for dryland conservation ecology. For this reason, improving segmentation methods and understanding the effect of spatial resolution on segmentation results is key to improve dryland vegetation monitoring. We explored and analyzed the accuracy of Object-Based Image Analysis (OBIA) and Mask Region-based Convolutional Neural Networks (Mask R-CNN) and the fusion of both methods in the segmentation of scattered vegetation in a dryland ecosystem. As a case study, we mapped Ziziphus lotus, the dominant shrub of a habitat of conservation priority in one of the driest areas of Europe. Our results show for the first time that the fusion of the results from OBIA and Mask R-CNN increases the accuracy of the segmentation of scattered shrubs up to 25% compared to both methods separately. Hence, by fusing OBIA and Mask R-CNNs on very high-resolution images, the improved segmentation accuracy of vegetation mapping would lead to more precise and sensitive monitoring of changes in biodiversity and ecosystem services in drylands.European Research Council (ERC) 647038European LIFE Project ADAPTAMED LIFE14 CCA/ES/000612Junta de Andalucia P18-RT-1927 P18-RT-5130DETECTOR A-RNM-256-UGR18European Union Funds for Regional DevelopmentHIPATIA-UAL fellowshipSpanish Government RYC-201518136A-TIC-458-UGR1

    On advances, challenges and potentials of remote sensing image analysis in marine debris and suspected plastics monitoring

    Get PDF
    Marine plastic pollution is an emerging environmental problem since it pollutes the ocean, air and food whilst endangering the ocean wildlife via the ingestion and entanglements. During the last decade, an enormous effort has been spent on finding possible solutions to marine plastic pollution. Remote sensing imagery sits in a crucial place for these efforts since it provides informative earth observation products, and the current technology offers further essential development. Despite the advances in the last decade, there is still a way to go for marine plastic monitoring research where challenges are rarely highlighted. This paper contributes to the literature with a critical review and aims to highlight literature milestones in marine debris and suspected plastics (MD&SP) monitoring by promoting the computational imaging methodology behind these approaches along with detailed discussions on challenges and potential future research directions

    Deep Learning Methods for Remote Sensing

    Get PDF
    Remote sensing is a field where important physical characteristics of an area are exacted using emitted radiation generally captured by satellite cameras, sensors onboard aerial vehicles, etc. Captured data help researchers develop solutions to sense and detect various characteristics such as forest fires, flooding, changes in urban areas, crop diseases, soil moisture, etc. The recent impressive progress in artificial intelligence (AI) and deep learning has sparked innovations in technologies, algorithms, and approaches and led to results that were unachievable until recently in multiple areas, among them remote sensing. This book consists of sixteen peer-reviewed papers covering new advances in the use of AI for remote sensing
    corecore