16 research outputs found

    Shared acoustic codes underlie emotional communication in music and speech—Evidence from deep transfer learning

    Get PDF
    Music and speech exhibit striking similarities in the communication of emotions in the acoustic domain, in such a way that the communication of specific emotions is achieved, at least to a certain extent, by means of shared acoustic patterns. From an Affective Sciences points of view, determining the degree of overlap between both domains is fundamental to understand the shared mechanisms underlying such phenomenon. From a Machine learning perspective, the overlap between acoustic codes for emotional expression in music and speech opens new possibilities to enlarge the amount of data available to develop music and speech emotion recognition systems. In this article, we investigate time-continuous predictions of emotion (Arousal and Valence) in music and speech, and the Transfer Learning between these domains. We establish a comparative framework including intra- (i.e., models trained and tested on the same modality, either music or speech) and cross-domain experiments (i.e., models trained in one modality and tested on the other). In the cross-domain context, we evaluated two strategies—the direct transfer between domains, and the contribution of Transfer Learning techniques (feature-representation-transfer based on Denoising Auto Encoders) for reducing the gap in the feature space distributions. Our results demonstrate an excellent cross-domain generalisation performance with and without feature representation transfer in both directions. In the case of music, cross-domain approaches outperformed intra-domain models for Valence estimation, whereas for Speech intra-domain models achieve the best performance. This is the first demonstration of shared acoustic codes for emotional expression in music and speech in the time-continuous domain

    Affective Music Information Retrieval

    Full text link
    Much of the appeal of music lies in its power to convey emotions/moods and to evoke them in listeners. In consequence, the past decade witnessed a growing interest in modeling emotions from musical signals in the music information retrieval (MIR) community. In this article, we present a novel generative approach to music emotion modeling, with a specific focus on the valence-arousal (VA) dimension model of emotion. The presented generative model, called \emph{acoustic emotion Gaussians} (AEG), better accounts for the subjectivity of emotion perception by the use of probability distributions. Specifically, it learns from the emotion annotations of multiple subjects a Gaussian mixture model in the VA space with prior constraints on the corresponding acoustic features of the training music pieces. Such a computational framework is technically sound, capable of learning in an online fashion, and thus applicable to a variety of applications, including user-independent (general) and user-dependent (personalized) emotion recognition and emotion-based music retrieval. We report evaluations of the aforementioned applications of AEG on a larger-scale emotion-annotated corpora, AMG1608, to demonstrate the effectiveness of AEG and to showcase how evaluations are conducted for research on emotion-based MIR. Directions of future work are also discussed.Comment: 40 pages, 18 figures, 5 tables, author versio

    Enhancing film sound design using audio features, regression models and artificial neural networks

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of New Music Research on 21/09/2021, available online: https://doi.org/10.1080/09298215.2021.1977336Making the link between human emotion and music is challenging. Our aim was to produce an efficient system that emotionally rates songs from multiple genres. To achieve this, we employed a series of online self-report studies, utilising Russell's circumplex model. The first study (n = 44) identified audio features that map to arousal and valence for 20 songs. From this, we constructed a set of linear regressors. The second study (n = 158) measured the efficacy of our system, utilising 40 new songs to create a ground truth. Results show our approach may be effective at emotionally rating music, particularly in the prediction of valence

    A multi-genre model for music emotion recognition using linear regressors

    Get PDF
    Making the link between human emotion and music is challenging. Our aim was to produce an efficient system that emotionally rates songs from multiple genres. To achieve this, we employed a series of online self-report studies, utilising Russell's circumplex model. The first study (n = 44) identified audio features that map to arousal and valence for 20 songs. From this, we constructed a set of linear regressors. The second study (n = 158) measured the efficacy of our system, utilising 40 new songs to create a ground truth. Results show our approach may be effective at emotionally rating music, particularly in the prediction of valence

    Automatic Recognition of Emotion for Music Recommendation

    Get PDF
    Music is widely associated with emotions. The automatic recognition of emotions from audio is very challenging because important factors such as personal experience and cultural background are not captured by the musical sounds. Currently, there are challenges associated with most steps of music emotion recognition (MER) systems, namely feature selection, the model of emotions, annotation methods, and machine learning techniques used. This project uses different machine learning techniques to automatically associate musical features calculated from audio to annotations of emotions made by human listeners. The map between the feature space and the model of emotions learned by the model can be used to estimate the emotions associated with music that the system has not been previously exposed to. Consequently, the system has the potential to recommend music to listeners based on emotional content
    corecore