37,808 research outputs found

    Multi-sample fusion with template protection

    Get PDF
    The widespread use of biometries and its increased popularity introduces privacy risks. In order to mitigate these risks, solutions such as the helper-data system, fuzzy vault, fuzzy extractors, and cancelable biometries were introduced, also known as the field of template proteetion. Besides these developments, fusion of multiple sources of biometrie information have shown to improve the verification performance of the biometrie system. Our work eonsists of analyzing feature-level fusion in the context of the template proteetion framework using the helper-data system. We verify the results using the FRGC v2 database and two feature extraction algorithms

    Multi-Sample Fusion with Template Protection

    Get PDF
    Abstract: The widespread use of biometrics and its increased popularity introduces privacy risks. In order to mitigate these risks, solutions such as the helper-data system, fuzzy vault, fuzzy extractors, and cancelable biometrics were introduced, also known as the field of template protection. Besides these developments, fusion of multiple sources of biometric information have shown to improve the verification performance of the biometric system. Our work consists of analyzing feature-level fusion in the context of the template protection framework using the helper-data system. We verify the results using the FRGC v2 database and two feature extraction algorithms.

    On the performance of helper data template protection schemes

    Get PDF
    The use of biometrics looks promising as it is already being applied in elec- tronic passports, ePassports, on a global scale. Because the biometric data has to be stored as a reference template on either a central or personal storage de- vice, its wide-spread use introduces new security and privacy risks such as (i) identity fraud, (ii) cross-matching, (iii) irrevocability and (iv) leaking sensitive medical information. Mitigating these risks is essential to obtain the accep- tance from the subjects of the biometric systems and therefore facilitating the successful implementation on a large-scale basis. A solution to mitigate these risks is to use template protection techniques. The required protection properties of the stored reference template according to ISO guidelines are (i) irreversibility, (ii) renewability and (iii) unlinkability. A known template protection scheme is the helper data system (HDS). The fun- damental principle of the HDS is to bind a key with the biometric sample with use of helper data and cryptography, as such that the key can be reproduced or released given another biometric sample of the same subject. The identity check is then performed in a secure way by comparing the hash of the key. Hence, the size of the key determines the amount of protection. This thesis extensively investigates the HDS system, namely (i) the the- oretical classication performance, (ii) the maximum key size, (iii) the irre- versibility and unlinkability properties, and (iv) the optimal multi-sample and multi-algorithm fusion method. The theoretical classication performance of the biometric system is deter- mined by assuming that the features extracted from the biometric sample are Gaussian distributed. With this assumption we investigate the in uence of the bit extraction scheme on the classication performance. With use of the the- oretical framework, the maximum size of the key is determined by assuming the error-correcting code to operate on Shannon's bound. We also show three vulnerabilities of HDS that aect the irreversibility and unlinkability property and propose solutions. Finally, we study the optimal level of applying multi- sample and multi-algorithm fusion with the HDS at either feature-, score-, or decision-level

    Fast and Accurate 3D Face Recognition Using Registration to an Intrinsic Coordinate System and Fusion of Multiple Region classifiers

    Get PDF
    In this paper we present a new robust approach for 3D face registration to an intrinsic coordinate system of the face. The intrinsic coordinate system is defined by the vertical symmetry plane through the nose, the tip of the nose and the slope of the bridge of the nose. In addition, we propose a 3D face classifier based on the fusion of many dependent region classifiers for overlapping face regions. The region classifiers use PCA-LDA for feature extraction and the likelihood ratio as a matching score. Fusion is realised using straightforward majority voting for the identification scenario. For verification, a voting approach is used as well and the decision is defined by comparing the number of votes to a threshold. Using the proposed registration method combined with a classifier consisting of 60 fused region classifiers we obtain a 99.0% identification rate on the all vs first identification test of the FRGC v2 data. A verification rate of 94.6% at FAR=0.1% was obtained for the all vs all verification test on the FRGC v2 data using fusion of 120 region classifiers. The first is the highest reported performance and the second is in the top-5 of best performing systems on these tests. In addition, our approach is much faster than other methods, taking only 2.5 seconds per image for registration and less than 0.1 ms per comparison. Because we apply feature extraction using PCA and LDA, the resulting template size is also very small: 6 kB for 60 region classifiers

    Towards a more secure border control with 3D face recognition

    Get PDF
    Biometric data have been integrated in all ICAO compliant passports, since the ICAO members started to implement the ePassport standard. The additional use of three-dimensional models promises significant performance enhancements for border control points. By combining the geometry- and texture-channel information of the face, 3D face recognition systems show an improved robustness while processing variations in poses and problematic lighting conditions when taking the photo. This even holds in a hybrid scenario, when a 3D face scan is compared to a 2D reference image. To assess the potential of three-dimensional face recognition, the 3D Face project was initiated. This paper outlines the approach and research results of this project: The objective was not only to increase the recognition rate but also to develop a new, fake resistant capture device. In addition, methods for protection of the biometric template were researched and the second generation of the international standard ISO/IEC 19794-5:2011 was inspired by the project results
    • ā€¦
    corecore