21,682 research outputs found

    Online Influence Maximization (Extended Version)

    Full text link
    Social networks are commonly used for marketing purposes. For example, free samples of a product can be given to a few influential social network users (or "seed nodes"), with the hope that they will convince their friends to buy it. One way to formalize marketers' objective is through influence maximization (or IM), whose goal is to find the best seed nodes to activate under a fixed budget, so that the number of people who get influenced in the end is maximized. Recent solutions to IM rely on the influence probability that a user influences another one. However, this probability information may be unavailable or incomplete. In this paper, we study IM in the absence of complete information on influence probability. We call this problem Online Influence Maximization (OIM) since we learn influence probabilities at the same time we run influence campaigns. To solve OIM, we propose a multiple-trial approach, where (1) some seed nodes are selected based on existing influence information; (2) an influence campaign is started with these seed nodes; and (3) users' feedback is used to update influence information. We adopt the Explore-Exploit strategy, which can select seed nodes using either the current influence probability estimation (exploit), or the confidence bound on the estimation (explore). Any existing IM algorithm can be used in this framework. We also develop an incremental algorithm that can significantly reduce the overhead of handling users' feedback information. Our experiments show that our solution is more effective than traditional IM methods on the partial information.Comment: 13 pages. To appear in KDD 2015. Extended versio

    The Complexity of Finding Effectors

    Full text link
    The NP-hard EFFECTORS problem on directed graphs is motivated by applications in network mining, particularly concerning the analysis of probabilistic information-propagation processes in social networks. In the corresponding model the arcs carry probabilities and there is a probabilistic diffusion process activating nodes by neighboring activated nodes with probabilities as specified by the arcs. The point is to explain a given network activation state as well as possible by using a minimum number of "effector nodes"; these are selected before the activation process starts. We correct, complement, and extend previous work from the data mining community by a more thorough computational complexity analysis of EFFECTORS, identifying both tractable and intractable cases. To this end, we also exploit a parameterization measuring the "degree of randomness" (the number of "really" probabilistic arcs) which might prove useful for analyzing other probabilistic network diffusion problems as well.Comment: 28 page

    Locally Adaptive Optimization: Adaptive Seeding for Monotone Submodular Functions

    Full text link
    The Adaptive Seeding problem is an algorithmic challenge motivated by influence maximization in social networks: One seeks to select among certain accessible nodes in a network, and then select, adaptively, among neighbors of those nodes as they become accessible in order to maximize a global objective function. More generally, adaptive seeding is a stochastic optimization framework where the choices in the first stage affect the realizations in the second stage, over which we aim to optimize. Our main result is a (1−1/e)2(1-1/e)^2-approximation for the adaptive seeding problem for any monotone submodular function. While adaptive policies are often approximated via non-adaptive policies, our algorithm is based on a novel method we call \emph{locally-adaptive} policies. These policies combine a non-adaptive global structure, with local adaptive optimizations. This method enables the (1−1/e)2(1-1/e)^2-approximation for general monotone submodular functions and circumvents some of the impossibilities associated with non-adaptive policies. We also introduce a fundamental problem in submodular optimization that may be of independent interest: given a ground set of elements where every element appears with some small probability, find a set of expected size at most kk that has the highest expected value over the realization of the elements. We show a surprising result: there are classes of monotone submodular functions (including coverage) that can be approximated almost optimally as the probability vanishes. For general monotone submodular functions we show via a reduction from \textsc{Planted-Clique} that approximations for this problem are not likely to be obtainable. This optimization problem is an important tool for adaptive seeding via non-adaptive policies, and its hardness motivates the introduction of \emph{locally-adaptive} policies we use in the main result
    • …
    corecore