766 research outputs found

    Right Place, Right Time:Proactive Multi-Robot Task Allocation Under Spatiotemporal Uncertainty

    Get PDF
    For many multi-robot problems, tasks are announced during execution, where task announcement times and locations are uncertain. To synthesise multi-robot behaviour that is robust to early announcements and unexpected delays, multi-robot task allocation methods must explicitly model the stochastic processes that govern task announcement. In this paper, we model task announcement using continuous-time Markov chains which predict when and where tasks will be announced. We then present a task allocation framework which uses the continuous-time Markov chains to allocate tasks proactively, such that robots are near or at the task location upon its announcement. Our method seeks to minimise the expected total waiting duration for each task, i.e. the duration between task announcement and a robot beginning to service the task. Our framework can be applied to any multi-robot task allocation problem where robots complete spatiotemporal tasks which are announced stochastically. We demonstrate the efficacy of our approach in simulation, where we outperform baselines which do not allocate tasks proactively, or do not fully exploit our task announcement models

    Suitable task allocation in intelligent systems for assistive environments

    Get PDF
    The growing need of technological assistance to provide support to people with special needs demands for systems more and more efficient and with better performances. With this aim, this work tries to advance in a multirobot platform that allows the coordinated control of different agents and other elements in the environment to achieve an autonomous behavior based on the user’s needs or will. Therefore, this environment is structured according to the potentiality of each agent and elements of this environment and of the dynamic context, to generate the adequate actuation plans and the coordination of their execution.Peer ReviewedPostprint (author's final draft

    Improved Decentral Task Allocation for Autonomous Guided Vehicle Systems based on Karis Pro

    Get PDF
    In this paper, we extended an existing decentralised method for allocating tasks to AGVs, by additionally considering vehicles which already are assigned to a task. This was achieved by also taking into account the opportunity costs arising from a vehicle passing a current task to another vehicle and subsequently accepting a new task. This loosened restriction is enabling the vehicle fleet for a higher flexibility, which can be used for improving the efficiency of the overall system. By means of simulation, our findings confirm the notion that our extended method - namely Karis Pro+ - leads to lower traffic density and higher flexibility, both of which are important KPI for large-scale transport vehicle systems.In this paper, we extended an existing decentralised method for allocating tasks to AGVs, by additionally considering vehicles which already are assigned to a task. This was achieved by also taking into account the opportunity costs arising from a vehicle passing a current task to another vehicle and subsequently accepting a new task. This loosened restriction is enabling the vehicle fleet for a higher flexibility, which can be used for improving the efficiency of the overall system. By means of simulation, our findings confirm the notion that our extended method - namely Karis Pro+ - leads to lower traffic density and higher flexibility, both of which are important KPI for large-scale transport vehicle systems

    Multi-Robot Task Allocation: A Spatial Queuing Approach

    Get PDF
    Multi-Robot Task Allocation (MRTA) is an important area of research in autonomous multi-robot systems. The main problem in MRTA is to match a set of robots to a set of tasks so that the tasks can be completed by the robots while optimizing a certain metric such as the time required to complete all tasks, distance traveled by the robots and energy expended by the robots. We consider a scenario where the tasks can appear dynamically and the location of tasks are not known a priori by the robots. Additionally, for a task to be completed, it needs to be performed by multiple robots. This setting is called the MR-ST-TA (multi-robot, single-task, time- extended assginment) category of MRTA; solving the MRTA problem for this category is a known NP-hard problem. In this thesis, we address this problem by proposing a new algorithm that uses a spatial queue-based model to allocate tasks between robots while comparing its performance to several other known methods. We have implemented these algorithms on an accurately simulated model of Corobot robots within the Webots simulator for different numbers of robots and tasks. The results show that our method is adept in all proffered environments, especially scenarios that benefit from path planning, whereas other methods display inherent weakness at one end of the spectrum: a decentralized greedy approach exhibits inefficient behavior as the robot to task ratio dips below one, whereas the Hungarian method (an offline algorithm) fails to keep pace as the robot count increases

    Multi-Robot Task Allocation and Scheduling with Spatio-Temporal and Energy Constraints

    Get PDF
    Autonomy in multi-robot systems is bounded by coordination among its agents. Coordination implies simultaneous task decomposition, task allocation, team formation, task scheduling and routing; collectively termed as task planning. In many real-world applications of multi-robot systems such as commercial cleaning, delivery systems, warehousing and inventory management: spatial & temporal constraints, variable execution time, and energy limitations need to be integrated into the planning module. Spatial constraints comprise of the location of the tasks, their reachability, and the structure of the environment; temporal constraints express task completion deadlines. There has been significant research in multi-robot task allocation involving spatio-temporal constraints. However, limited attention has been paid to combine them with team formation and non- instantaneous task execution time. We achieve team formation by including quota constraints which ensure to schedule the number of robots required to perform the task. We introduce and integrate task activation (time) windows with the team effort of multiple robots in performing tasks for a given duration. Additionally, while visiting tasks in space, energy budget affects the robots operation time. We map energy depletion as a function of time to ensure long-term operation by periodically visiting recharging stations. Research on task planning approaches which combines all these conditions is still lacking. In this thesis, we propose two variants of Team Orienteering Problem with task activation windows and limited energy budget to formulate the simultaneous task allocation and scheduling as an optimization problem. A complete mixed integer linear programming (MILP) formulation for both variants is presented in this work, implemented using Gurobi Optimizer and analyzed for scalability. This work compares the different objectives of the formulation like maximizing the number of tasks visited, minimizing the total distance travelled, and/or maximizing the reward, to suit various applications. Finally, analysis of optimal solutions discover trends in task selection based on the travel cost, task completion rewards, robot\u27s energy level, and the time left to task inactivation

    Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    Full text link
    Coordinating agents to complete a set of tasks with intercoupled temporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the ``single-expert, single-trainee" apprenticeship model. However, human domain experts often have difficulty describing their decision-making processes, causing the codification of this knowledge to become laborious. We propose a new approach for capturing domain-expert heuristics through a pairwise ranking formulation. Our approach is model-free and does not require enumerating or iterating through a large state space. We empirically demonstrate that this approach accurately learns multifaceted heuristics on a synthetic data set incorporating job-shop scheduling and vehicle routing problems, as well as on two real-world data sets consisting of demonstrations of experts solving a weapon-to-target assignment problem and a hospital resource allocation problem. We also demonstrate that policies learned from human scheduling demonstration via apprenticeship learning can substantially improve the efficiency of a branch-and-bound search for an optimal schedule. We employ this human-machine collaborative optimization technique on a variant of the weapon-to-target assignment problem. We demonstrate that this technique generates solutions substantially superior to those produced by human domain experts at a rate up to 9.5 times faster than an optimization approach and can be applied to optimally solve problems twice as complex as those solved by a human demonstrator.Comment: Portions of this paper were published in the Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) in 2016 and in the Proceedings of Robotics: Science and Systems (RSS) in 2016. The paper consists of 50 pages with 11 figures and 4 table

    Auction-based Task Allocation for Safe and Energy Efficient UAS Parcel Transportation

    Get PDF
    In this paper, two greedy auction-based algorithms are proposed for the allocation of heterogeneous tasks to a heterogeneous fleet of UAVs. The tasks set is composed of parcel delivery tasks and charge tasks, the latter to guarantee service persistency. An optimization problem is solved by each agent to determine its bid for each task. When considering delivery tasks, the bidder aims at minimizing the energy consumption, while the minimization of the flight time is adopted for charge tasks bids. The algorithms include a path planner that computes the minimum risk path for each task-UAV bid exploiting a 2D risk map of the operational area, defined in an urban environment. Each solution approach is implemented by means of two auction strategies: single-item and multiple-item. Considerations about complexity and efficiency of the algorithms are drawn from Monte Carlo simulations

    What’s in it for me? Incentive-compatible route coordination of crowdsourced resources

    Full text link
    With the recent trend in crowdsourcing, i.e., using the power of crowds to assist in satisfying demand, the pool of resources suitable for GeoPresence-capable systems has expanded to include already roaming devices, such as mobile phones, and moving vehicles. We envision an environment, in which the motion of these crowdsourced mobile resources is coordinated, according to their preexisting schedules to satisfy geo-temporal demand on a mobility field. In this paper, we propose an incentive compatible route coordination mechanism for crowdsourced resources, in which participating mobile agents satisfy geo-temporal requests in return for monetary rewards. We define the Flexible Route Coordination (FRC) problem, in which an agent’s flexibility is exploited to maximize the coverage of a mobility field, with an objective to maximize the revenue collected from satisfied paying requests. Given that the FRC problem is NP-hard, we define an optimal algorithm to plan the route of a single agent on a graph with evolving labels, then we use that algorithm to define a 1/2-approximation algorithm to solve the problem in its general model, with multiple agents. Moreover, we define an incentive compatible, rational, and cash-positive payment mechanism, which guarantees that an agent’s truthfulness about its flexibility is an ex-post Nash equilibrium strategy. Finally, we analyze the proposed mechanisms theoretically, and evaluate their performance experimentally using real mobility traces from urban environments.Supported in part by NSF Grants, #1430145, #1414119, #1347522, #1239021, and #1012798
    corecore