2,163 research outputs found

    ResnetCrowd: a residual deep learning architecture for crowd counting, violent behaviour detection and crowd density level classification

    Get PDF
    In this paper we propose ResnetCrowd, a deep residual architecture for simultaneous crowd counting, violent behaviour detection and crowd density level classification. To train and evaluate the proposed multi-objective technique, a new 100 image dataset referred to as Multi Task Crowd is constructed. This new dataset is the first computer vision dataset fully annotated for crowd counting, violent behaviour detection and density level classification. Our experiments show that a multi-task approach boosts individual task performance for all tasks and most notably for violent behaviour detection which receives a 9\% boost in ROC curve AUC (Area under the curve). The trained ResnetCrowd model is also evaluated on several additional benchmarks highlighting the superior generalisation of crowd analysis models trained for multiple objectives

    Crowd detection and counting using a static and dynamic platform: state of the art

    Get PDF
    Automated object detection and crowd density estimation are popular and important area in visual surveillance research. The last decades witnessed many significant research in this field however, it is still a challenging problem for automatic visual surveillance. The ever increase in research of the field of crowd dynamics and crowd motion necessitates a detailed and updated survey of different techniques and trends in this field. This paper presents a survey on crowd detection and crowd density estimation from moving platform and surveys the different methods employed for this purpose. This review category and delineates several detections and counting estimation methods that have been applied for the examination of scenes from static and moving platforms

    Human Centered Computer Vision Techniques for Intelligent Video Surveillance Systems

    Get PDF
    Nowadays, intelligent video surveillance systems are being developed to support human operators in different monitoring and investigation tasks. Although relevant results have been achieved by the research community in several computer vision tasks, some real applications still exhibit several open issues. In this context, this thesis focused on two challenging computer vision tasks: person re-identification and crowd counting. Person re-identification aims to retrieve images of a person of interest, selected by the user, in different locations over time, reducing the time required to the user to analyse all the available videos. Crowd counting consists of estimating the number of people in a given image or video. Both tasks present several complex issues. In this thesis, a challenging video surveillance application scenario is considered in which it is not possible to collect and manually annotate images of a target scene (e.g., when a new camera installation is made by Law Enforcement Agency) to train a supervised model. Two human centered solutions for the above mentioned tasks are then proposed, in which the role of the human operators is fundamental. For person re-identification, the human-in-the-loop approach is proposed, which exploits the operator feedback on retrieved pedestrian images during system operation, to improve system's effectiveness. The proposed solution is based on revisiting relevance feedback algorithms for content-based image retrieval, and on developing a specific feedback protocol, to find a trade-off between the human effort and re-identification performance. For crowd counting, the use of a synthetic training set is proposed to develop a scene-specific model, based on a minimal amount of information of the target scene required to the user. Both solutions are empirically investigated using state-of-the-art supervised models based on Convolutional Neural Network, on benchmark data sets

    On Deep Machine Learning Methods for Anomaly Detection within Computer Vision

    Get PDF
    This thesis concerns deep learning approaches for anomaly detection in images. Anomaly detection addresses how to find any kind of pattern that differs from the regularities found in normal data and is receiving increasingly more attention in deep learning research. This is due in part to its wide set of potential applications ranging from automated CCTV surveillance to quality control across a range of industries. We introduce three original methods for anomaly detection applicable to two specific deployment scenarios. In the first, we detect anomalous activity in potentially crowded scenes through imagery captured via CCTV or other video recording devices. In the second, we segment defects in textures and demonstrate use cases representative of automated quality inspection on industrial production lines. In the context of detecting anomalous activity in scenes, we take an existing state-of-the-art method and introduce several enhancements including the use of a region proposal network for region extraction and a more information-preserving feature preprocessing strategy. This results in a simpler method that is significantly faster and suitable for real-time application. In addition, the increased efficiency facilitates building higher-dimensional models capable of improved anomaly detection performance, which we demonstrate on the pedestrian-based UCSD Ped2 dataset. In the context of texture defect detection, we introduce a method based on the idea of texture restoration that surpasses all state-of-the-art methods on the texture classes of the challenging MVTecAD dataset. In the same context, we additionally introduce a method that utilises transformer networks for future pixel and feature prediction. This novel method is able to perform competitive anomaly detection on most of the challenging MVTecAD dataset texture classes and illustrates both the promise and limitations of state-of-the-art deep learning transformers for the task of texture anomaly detection
    corecore