5 research outputs found

    An adaptive software defined radio design based on a standard space telecommunication radio system API

    Full text link
    Software defined radio (SDR) has become a popular tool for the implementation and testing for communications performance. The advantage of the SDR approach includes: a re-configurable design, adaptive response to changing conditions, efficient development, and highly versatile implementation. In order to understand the benefits of SDR, the space telecommunication radio system (STRS) was proposed by NASA Glenn research center (GRC) along with the standard application program interface (API) structure. Each component of the system uses a well-defined API to communicate with other components. The benefit of standard API is to relax the platform limitation of each component for addition options. For example, the waveform generating process can support a field programmable gate array (FPGA), personal computer (PC), or an embedded system. As long as the API defines the requirements, the generated waveform selection will work with the complete system. In this paper, we demonstrate the design and development of adaptive SDR following the STRS and standard API protocol. We introduce step by step the SDR testbed system including the controlling graphic user interface (GUI), database, GNU radio hardware control, and universal software radio peripheral (USRP) tranceiving front end. In addition, a performance evaluation in shown on the effectiveness of the SDR approach for space telecommunication

    Multi-Agent Pursuit of a Faster Evader with Application to Unmanned Aerial Vehicles

    Get PDF
    Robotic applications like search and rescue missions, surveillance, police missions, patrolling, and warfare can all be modeled as a Pursuit-Evasion Game (PEG). Most of these tasks are multi-agent problems, often including a cooperation between team members and a conflict between adversarial teams. In order to realize such a situation with robots, two major problems have to be solved. Initially, a decomposition of the PEG has to be performed for getting results in reasonable time. Present embedded computers lack the computational power enabling them to process the highly complex solution algorithm of the non-decomposed game fast enough. Secondly, a framework has to be defined, enabling the computation of optimal actions for both the pursuers and the evaders when a cooperation within the teams is possible. It is intended to develop strategies, that allow the team of pursuers to capture a faster evader in a visibility-based PEG setup due to cooperation. For tackling the first problem a game structure is sought, aiming to considerably reduce the time complexity of the solution process. The first step is the decomposition of the action space, and the second is the change of the game structure itself. The latter is reached by defining a two-pursuer one-evader PEG with three different game structures, which are the Non-Decomposed Game, the Multiple Two-Player Game Decomposition (MTPGD) game, and the Team-Subsumption Two-Player Game (TSTPG). Several simulation results demonstrate, that both methods yield close results in respect to the full game. With increasing cardinality of each player’s strategy space, the MTPGD yields a relevant decrease of the run-time. Otherwise, the TSTPG does not minimize the time complexity, but enables the use of more sophisticated algorithms for two-player games, resulting in a decreased runtime. The cooperation within a team is enabled by introducing a hierarchical decomposition of the game. On a superordinate collaboration level, the pursuers choose their optimal behavioral strategy (e.g. pursuit and battue) resulting in the case of a two-pursuer one-evader PEG in a three-player noncooperative dynamic game, which is solved in a subordinate level of the overall game. This structure enables an intelligent behavior change for the pursuers based on game-theoretical solution methods. Depending on the state of the game, which behavioral strategy yields the best results for the pursuers within a predefined time horizon has to be evaluated. It is shown that the pursuer’s outcome can be improved by using a superordinate cooperation. Moreover, conditions are presented under which a capture of a faster evader by a group of two pursuers is possible in a visibility-based PEG with imperfect information. Since Unmanned Aerial Vehicles (UAVs) are increasingly a common platform used in the aforementioned applications, this work focuses only on PEGs with multi-rotor UAVs. Furthermore, the realization of the concepts in this thesis are applied on a real hex rotor. The feasibility of the approach is proven in experiments, while all implementations on the UAV are running in real-time. This framework provides a solution concept for all types of dynamic games with an 1-M or N-1 setup, that have a non-cooperative and cooperative nature. At this stage a N-M dynamic game is not applicable. Nevertheless, an approach to extend this framework to the N-M case is proposed in the last chapter of this work

    Deception in Game Theory: A Survey and Multiobjective Model

    Get PDF
    Game theory is the study of mathematical models of conflict. It provides tools for analyzing dynamic interactions between multiple agents and (in some cases) across multiple interactions. This thesis contains two scholarly articles. The first article is a survey of game-theoretic models of deception. The survey describes the ways researchers use game theory to measure the practicality of deception, model the mechanisms for performing deception, analyze the outcomes of deception, and respond to, or mitigate the effects of deception. The survey highlights several gaps in the literature. One important gap concerns the benefit-cost-risk trade-off made during deception planning. To address this research gap, the second article introduces a novel approach for modeling these trade-offs. The approach uses a game theoretic model of deception to define a new multiobjective optimization problem called the deception design problem (DDP). Solutions to the DDP provide courses of deceptive action that are efficient in terms of their benefit, cost, and risk to the deceiver. A case study based on the output of an air-to-air combat simulator demonstrates the DDP in a 7 x 7 normal form game. This approach is the first to evaluate benefit, cost, and risk in a single game theoretic model of deception

    Receding Horizon based Cooperative Vehicle Control with Optimal Task Allocation

    Get PDF
    The problem of cooperative multi-target interception in an uncertain environment is investigated in this thesis. The targets arrive in the mission space sequentially at a priori unknown time instants and a priori unknown locations, and then move on a priori unknown trajectories. A group of vehicles with known dynamics are employed to visit the targets as quickly and efficiently as possible. To this end, a time-discounting reward is defined for each target which can be collected only if one of the vehicles visits that target. A cooperative receding horizon scheme is designed, which predicts the future positions of the targets and maximizes the estimate of the expected total collectible rewards, accordingly. The problem is initially investigated for the case when there are a finite number of targets arriving in the mission space sequentially. It is shown that the number of targets that are not visited by any vehicle in the mission space will be sufficiently small if the targets arrive sufficiently infrequently. The problem is then generalized to the case of infinite number of targets and a finite-time convergence analysis is also presented. A more practical case where the vehicles have limited sensing and communication ranges is also investigated using a game-theoretic approach. The problem is then solved for the case when a cluster of vehicles is required to visit each target. Simulations confirm the efficacy of the proposed strategies

    Advances and Applications of Dezert-Smarandache Theory (DSmT) for Information Fusion (Collected Works), Vol. 4

    Get PDF
    The fourth volume on Advances and Applications of Dezert-Smarandache Theory (DSmT) for information fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics. The contributions (see List of Articles published in this book, at the end of the volume) have been published or presented after disseminating the third volume (2009, http://fs.unm.edu/DSmT-book3.pdf) in international conferences, seminars, workshops and journals. First Part of this book presents the theoretical advancement of DSmT, dealing with Belief functions, conditioning and deconditioning, Analytic Hierarchy Process, Decision Making, Multi-Criteria, evidence theory, combination rule, evidence distance, conflicting belief, sources of evidences with different importance and reliabilities, importance of sources, pignistic probability transformation, Qualitative reasoning under uncertainty, Imprecise belief structures, 2-Tuple linguistic label, Electre Tri Method, hierarchical proportional redistribution, basic belief assignment, subjective probability measure, Smarandache codification, neutrosophic logic, Evidence theory, outranking methods, Dempster-Shafer Theory, Bayes fusion rule, frequentist probability, mean square error, controlling factor, optimal assignment solution, data association, Transferable Belief Model, and others. More applications of DSmT have emerged in the past years since the apparition of the third book of DSmT 2009. Subsequently, the second part of this volume is about applications of DSmT in correlation with Electronic Support Measures, belief function, sensor networks, Ground Moving Target and Multiple target tracking, Vehicle-Born Improvised Explosive Device, Belief Interacting Multiple Model filter, seismic and acoustic sensor, Support Vector Machines, Alarm classification, ability of human visual system, Uncertainty Representation and Reasoning Evaluation Framework, Threat Assessment, Handwritten Signature Verification, Automatic Aircraft Recognition, Dynamic Data-Driven Application System, adjustment of secure communication trust analysis, and so on. Finally, the third part presents a List of References related with DSmT published or presented along the years since its inception in 2004, chronologically ordered
    corecore