292 research outputs found

    Resilient Digital Image Watermarking Using a DCT- Component Perturbation Model

    Get PDF
    The applications of the Discrete Cosine Transform (DCT) for Computer Generated Imagery, image processingand, in particular, image compression are well known and the DCT also forms the central kernel for a number ofdigital image watermarking methods. In this paper we consider the application of the DCT for producing a highlyrobust method of watermarking images using a block partitioning approach subject to a self-alignment strategyand bit error correction. The applications for the algorithms presented include the copyright protection of imagesand Digital Right Management for image libraries, for example. However, the principal focus of the researchreported in this paper is on the use of print-scan and e-display-scan image authentication for use in e-ticketswhere QR code, for example, are embedded in an full colour image of the ticket holder. This requires that a DCTembedding procedure is developed that is highly robust to blur, noise, geometric distortions such as rotation, shift and barrel and the partial removal of image segments, all of which are consider ed in regard to the resilience of the method proposed and its practical realisation in a real operating environment

    Information embedding and retrieval in 3D printed objects

    Get PDF
    Deep learning and convolutional neural networks have become the main tools of computer vision. These techniques are good at using supervised learning to learn complex representations from data. In particular, under limited settings, the image recognition model now performs better than the human baseline. However, computer vision science aims to build machines that can see. It requires the model to be able to extract more valuable information from images and videos than recognition. Generally, it is much more challenging to apply these deep learning models from recognition to other problems in computer vision. This thesis presents end-to-end deep learning architectures for a new computer vision field: watermark retrieval from 3D printed objects. As it is a new area, there is no state-of-the-art on many challenging benchmarks. Hence, we first define the problems and introduce the traditional approach, Local Binary Pattern method, to set our baseline for further study. Our neural networks seem useful but straightfor- ward, which outperform traditional approaches. What is more, these networks have good generalization. However, because our research field is new, the problems we face are not only various unpredictable parameters but also limited and low-quality training data. To address this, we make two observations: (i) we do not need to learn everything from scratch, we know a lot about the image segmentation area, and (ii) we cannot know everything from data, our models should be aware what key features they should learn. This thesis explores these ideas and even explore more. We show how to use end-to-end deep learning models to learn to retrieve watermark bumps and tackle covariates from a few training images data. Secondly, we introduce ideas from synthetic image data and domain randomization to augment training data and understand various covariates that may affect retrieve real-world 3D watermark bumps. We also show how the illumination in synthetic images data to effect and even improve retrieval accuracy for real-world recognization applications

    Securing Interactive Sessions Using Mobile Device through Visual Channel and Visual Inspection

    Full text link
    Communication channel established from a display to a device's camera is known as visual channel, and it is helpful in securing key exchange protocol. In this paper, we study how visual channel can be exploited by a network terminal and mobile device to jointly verify information in an interactive session, and how such information can be jointly presented in a user-friendly manner, taking into account that the mobile device can only capture and display a small region, and the user may only want to authenticate selective regions-of-interests. Motivated by applications in Kiosk computing and multi-factor authentication, we consider three security models: (1) the mobile device is trusted, (2) at most one of the terminal or the mobile device is dishonest, and (3) both the terminal and device are dishonest but they do not collude or communicate. We give two protocols and investigate them under the abovementioned models. We point out a form of replay attack that renders some other straightforward implementations cumbersome to use. To enhance user-friendliness, we propose a solution using visual cues embedded into the 2D barcodes and incorporate the framework of "augmented reality" for easy verifications through visual inspection. We give a proof-of-concept implementation to show that our scheme is feasible in practice.Comment: 16 pages, 10 figure

    Symmetry-Adapted Machine Learning for Information Security

    Get PDF
    Symmetry-adapted machine learning has shown encouraging ability to mitigate the security risks in information and communication technology (ICT) systems. It is a subset of artificial intelligence (AI) that relies on the principles of processing future events by learning past events or historical data. The autonomous nature of symmetry-adapted machine learning supports effective data processing and analysis for security detection in ICT systems without the interference of human authorities. Many industries are developing machine-learning-adapted solutions to support security for smart hardware, distributed computing, and the cloud. In our Special Issue book, we focus on the deployment of symmetry-adapted machine learning for information security in various application areas. This security approach can support effective methods to handle the dynamic nature of security attacks by extraction and analysis of data to identify hidden patterns of data. The main topics of this Issue include malware classification, an intrusion detection system, image watermarking, color image watermarking, battlefield target aggregation behavior recognition model, IP camera, Internet of Things (IoT) security, service function chain, indoor positioning system, and crypto-analysis

    Verification approach for medical data in e-healthcare system based on biometric and watermarking

    Get PDF
    Medical information is crucial in the healthcare system, and its manipulation can lead to misdiagnosis. Medical images also contain personal information for patients; hence, information security and privacy protection are paramount when transferring medical images over the Internet. Biometric approach and watermarking techniques are used to achieve this purpose. The focus of this paper was on a biometric watermarking system with a frequency domain in which the sender's iris code is employed as a sender authentication key. The privacy of the patient's information is preserved by encrypting it and embedding the key in the cover medical image created by the Discrete Wavelet Transform. The algorithm has shown that the proposed system has met previous requirements

    A review on structured scheme representation on data security application

    Get PDF
    With the rapid development in the era of Internet and networking technology, there is always a requirement to improve the security systems, which secure the transmitted data over an unsecured channel. The needs to increase the level of security in transferring the data always become the critical issue. Therefore, data security is a significant area in covering the issue of security, which refers to protect the data from unwanted forces and prevent unauthorized access to a communication. This paper presents a review of structured-scheme representation for data security application. There are five structured-scheme types, which can be represented as dual-scheme, triple-scheme, quad-scheme, octal-scheme and hexa-scheme. These structured-scheme types are designed to improve and strengthen the security of data on the application
    corecore