69 research outputs found

    Multi-Poisson Process Analysis of Real-Time Soft-Error Rate Measurements in Bulk 65nm SRAMs

    Get PDF
    International audienceAltitude and underground real-time soft error rate (SER) measurements on SRAM circuits have been analyzed in terms of independent multi-Poisson processes describing the occurrence of single events as a function of bit flip multiplicity. Applied for both neutron-induced and alpha particle-induced SERs, this detailed analysis highlights the respective contributions of atmospheric radiation and alpha contamination to multiple cell upset mechanisms. It also offers a simple way to predict by simulation the radiation response of a given technology for any terrestrial position, as illustrated here for bulk 65nm SRAMs

    Use of CCD to Detect Terrestrial Cosmic Rays at Ground Level: Altitude vs. Underground Experiments, Modeling and Numerical Monte Carlo Simulation

    No full text
    International audienceIn this work, we used a commercial charge-coupled device (CCD) camera to detect and monitor terrestrial cosmic rays at ground level. Multi-site characterization has been performed at sea level (Marseille), underground (Modane Underground Laboratory) and at mountain altitude (Aiguille du Midi-Chamonix Mont-Blanc at +3,780 m of altitude) to separate the atmospheric and alpha particle emitter's contributions in the CCD response. An additional experiment at avionics altitude during a long-haul flight has been also conducted. Experiment results demonstrate the importance of the alpha contamination in the CCD response at ground level and its sensitivity to charged particles. Experimental data as a function of CCD orientation also suggests an anisotropy of the particle flux for which the device is sensitive. A complete computational modeling of the CCD imager has been conducted, based on a simplified 3D CCD architecture deduced from a reverse engineering study using electron microscopy and physico-chemical analysis. Monte Carlo simulations evidence the major contribution of low energy (below a few MeV) protons and muons in the CCD response. Comparison between experiments and simulation shows a good agreement at ground level, fully validated at avionics altitudes with a much higher particle flux and a different particle cocktail composition

    Criticality of Low-Energy Protons in Single-Event Effects Testing of Highly-Scaled Technologies

    Get PDF
    We report low-energy proton and low-energy alpha particle single-event effects (SEE) data on a 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) latches and static random access memory (SRAM) that demonstrates the criticality of using low-energy protons for SEE testing of highly-scaled technologies. Low-energy protons produced a significantly higher fraction of multi-bit upsets relative to single-bit upsets when compared to similar alpha particle data. This difference highlights the importance of performing hardness assurance testing with protons that include energy distribution components below 2 megaelectron-volt. The importance of low-energy protons to system-level single-event performance is based on the technology under investigation as well as the target radiation environment

    Design, implementation and testing of SRAM based neutron detectors

    Get PDF
    Neutrons of thermal and high energies can change the value of a bit stored in a Static Random Access Memory (SRAM) memory chip. The effect is non destructive and linearly dependent on the amount of incoming particles, which makes it exploitable for use as a neutron detector. Detection is done by writing a known pattern to the memory and continuously reading it back checking for wrong values. As the SRAM memory is immune to gamma radiation it is ideal for use in for instance medical linear accelerators for detection of neutron dose to a patient. The intention of this work has been twofold: (1) Testing of different SRAM devices of different bit-sizes, manufacturers, feature sizes and voltages for their sensitivity to neutrons of different energies from thermal to high energies. (2) Design and implement detector hardware, firmware and its accompanying readout system for successful use in irradiation testing. The work has been done in close collaboration with Eivind Larsen, whose main contributions has been related to the nuclear physics aspect of the work in addition to arrangements in regard to beam setup and experimentation. Testing have been done at the Physikalisch-Technische Bundesanstalt (PTB) facility in Braunschweig Germany in a quasi-monochromatic neutron beam of 5:8MeV, 8:5MeV and 14:8MeV, finding a dependence of the sensitivity on the energy. In addition there have been testing conducted in the high energy hadron field at CERF at CERN, finding that by using the results from the other experiments an estimated range of the saturation cross section could be determined. Testing was also conducted at two occasions in the 29MeV proton beam at Oslo Cyclotron Laboratory (OCL) in Oslo Norway, where it was found that the detector could be used as a reference detector for beam monitoring and for beam profile characterization. The cross sections of the detectors were found to be comparable to the 14:8MeV cross section found at PTB. Thermal neutron testing of the devices was done in the thermal neutron field of the nuclear reactor at Institute for Energy Technology (IFE) at Kjeller Norway. All the devices were found to be sensitive to the field. Detector electronics, adapted to the different devices, has been built which can withstand the same radiation as the memory device without malfunctioning. There has been a focus on using Commercial Off The Shelf (COTS) components for reducing the total cost of the detector to about 100-200$US. The use of COTS SRAM memory devices also simplifies the reproducibility and availability of spares. The detector currently uses a two way communication between the detector and iv Abstract the readout computer over two pair of cables reducing the amount of cabling needed for experiments. The detectors can be connected to the communication link in a bus fashion, currently enabling a total of 14 detectors to be tested simultaneously from 100m away, over the same cable. Single Event Latch-up (SEL) and problems with irregular count rate of SRAMs created in the 90nm fabrication node has created problems during testing. Some solutions and techniques to mitigate these in hardware and firmware are presented in this work.Master i FysikkMAMN-PHYSPHYS39

    Cross-Layer Resiliency Modeling and Optimization: A Device to Circuit Approach

    Get PDF
    The never ending demand for higher performance and lower power consumption pushes the VLSI industry to further scale the technology down. However, further downscaling of technology at nano-scale leads to major challenges. Reduced reliability is one of them, arising from multiple sources e.g. runtime variations, process variation, and transient errors. The objective of this thesis is to tackle unreliability with a cross layer approach from device up to circuit level

    Study of Radiation Tolerant Storage Cells for Digital Systems

    Get PDF
    Single event upsets (SEUs) are a significant reliability issue in semiconductor devices. Fully Depleted Silicon-on-Insulator (FDSOI) technologies have been shown to exhibit better SEU performance compared to bulk technologies. This is attributed to the thin Silicon (Si) layer on top of a Buried Oxide (BOX) layer, which allows each transistor to function as an insulated Si island, thus reducing the threat of charge-sharing. Moreover, the small volume of the Si in FDSOI devices results in a reduction of the amount of charge induced by an ion strike. The effects of Total Ionizing Dose (TID) on integrated circuits (ICs) can lead to changes in gate propagation delays, leakage currents, and device functionality. When IC circuits are exposed to ionizing radiation, positive charges accumulate in the gate oxide and field oxide layers, which results in reduced gate control and increased leakage current. TID effects in bulk technologies are usually simpler due to the presence of only one gate oxide layer, but FDSOI technologies have a more complex response to TID effects because of the additional BOX layer. In this research, we aim to address the challenges of developing cost-effective electronics for space applications by bridging the gap between expensive space-qualified components and high-performance commercial technologies. Key research questions involve exploring various radiation-hardening-by-design (RHBD) techniques and their trade-offs, as well as investigating the feasibility of radiation-hardened microcontrollers. The effectiveness of RHBD techniques in mitigating soft errors is well-established. In our study, a test chip was designed using the 22-nm FDSOI process, incorporating multiple RHBD Flip-Flop (FF) chains alongside a conventional FF chain. Three distinct types of ring oscillators (ROs) and a 256 kbit SRAM was also fabricated in the test chip. To evaluate the SEU and TID performance of these designs, we conducted multiple irradiation experiments with alpha particles, heavy ions, and gamma-rays. Alpha particle irradiation tests were carried out at the University of Saskatchewan using an Americium-241 alpha source. Heavy ion experiments were performed at the Texas A&M University Cyclotron Institute, utilizing Ne, Ar, Cu, and Ag in a 15 MeV/amu cocktail. Lastly, TID experiments were conducted using a Gammacell 220 Co-60 chamber at the University of Saskatchewan. By evaluating the performance of these designs under various irradiation conditions, we strive to advance the development of cost-effective, high-performance electronics suitable for space applications, ultimately demonstrating the significance of this project. When exposed to heavy ions, radiation-hardened FFs demonstrated varying levels of improvement in SEU performance, albeit with added power and timing penalties compared to conventional designs. Stacked-transistor DFF designs showed significant enhancement, while charge-cancelling and interleaving techniques further reduced upsets. Guard-gate (GG) based FF designs provided additional SEU protection, with the DFR-FF and GG-DICE FF designs showing zero upsets under all test conditions. Schmitt-trigger-based DFF designs exhibited improved SEU performance, making them attractive choices for hardening applications. The 22-nm FDSOI process proved more resilient to TID effects than the 28-nm process; however, TID effects remained prominent, with increased leakage current and SRAM block degradation at high doses. These findings offer valuable insights for designers aiming to meet performance and SER specifications for circuits in radiation environments, emphasizing the need for additional attention during the design phase for complex radiation-hardened circuits

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book
    • …
    corecore