57 research outputs found

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Multi-frequency PolSAR Image Fusion Classification Based on Semantic Interactive Information and Topological Structure

    Full text link
    Compared with the rapid development of single-frequency multi-polarization SAR image classification technology, there is less research on the land cover classification of multifrequency polarimetric SAR (MF-PolSAR) images. In addition, the current deep learning methods for MF-PolSAR classification are mainly based on convolutional neural networks (CNNs), only local spatiality is considered but the nonlocal relationship is ignored. Therefore, based on semantic interaction and nonlocal topological structure, this paper proposes the MF semantics and topology fusion network (MF-STFnet) to improve MF-PolSAR classification performance. In MF-STFnet, two kinds of classification are implemented for each band, semantic information-based (SIC) and topological property-based (TPC). They work collaboratively during MF-STFnet training, which can not only fully leverage the complementarity of bands, but also combine local and nonlocal spatial information to improve the discrimination between different categories. For SIC, the designed crossband interactive feature extraction module (CIFEM) is embedded to explicitly model the deep semantic correlation among bands, thereby leveraging the complementarity of bands to make ground objects more separable. For TPC, the graph sample and aggregate network (GraphSAGE) is employed to dynamically capture the representation of nonlocal topological relations between land cover categories. In this way, the robustness of classification can be further improved by combining nonlocal spatial information. Finally, an adaptive weighting fusion (AWF) strategy is proposed to merge inference from different bands, so as to make the MF joint classification decisions of SIC and TPC. The comparative experiments show that MF-STFnet can achieve more competitive classification performance than some state-of-the-art methods

    Classification of Polarimetric SAR Images Using Compact Convolutional Neural Networks

    Get PDF
    Classification of polarimetric synthetic aperture radar (PolSAR) images is an active research area with a major role in environmental applications. The traditional Machine Learning (ML) methods proposed in this domain generally focus on utilizing highly discriminative features to improve the classification performance, but this task is complicated by the well-known "curse of dimensionality" phenomena. Other approaches based on deep Convolutional Neural Networks (CNNs) have certain limitations and drawbacks, such as high computational complexity, an unfeasibly large training set with ground-truth labels, and special hardware requirements. In this work, to address the limitations of traditional ML and deep CNN based methods, a novel and systematic classification framework is proposed for the classification of PolSAR images, based on a compact and adaptive implementation of CNNs using a sliding-window classification approach. The proposed approach has three advantages. First, there is no requirement for an extensive feature extraction process. Second, it is computationally efficient due to utilized compact configurations. In particular, the proposed compact and adaptive CNN model is designed to achieve the maximum classification accuracy with minimum training and computational complexity. This is of considerable importance considering the high costs involved in labelling in PolSAR classification. Finally, the proposed approach can perform classification using smaller window sizes than deep CNNs. Experimental evaluations have been performed over the most commonly-used four benchmark PolSAR images: AIRSAR L-Band and RADARSAT-2 C-Band data of San Francisco Bay and Flevoland areas. Accordingly, the best obtained overall accuracies range between 92.33 - 99.39% for these benchmark study sites

    TAI-SARNET: Deep Transferred Atrous-Inception CNN for Small Samples SAR ATR

    Get PDF
    Since Synthetic Aperture Radar (SAR) targets are full of coherent speckle noise, the traditional deep learning models are difficult to effectively extract key features of the targets and share high computational complexity. To solve the problem, an effective lightweight Convolutional Neural Network (CNN) model incorporating transfer learning is proposed for better handling SAR targets recognition tasks. In this work, firstly we propose the Atrous-Inception module, which combines both atrous convolution and inception module to obtain rich global receptive fields, while strictly controlling the parameter amount and realizing lightweight network architecture. Secondly, the transfer learning strategy is used to effectively transfer the prior knowledge of the optical, non-optical, hybrid optical and non-optical domains to the SAR target recognition tasks, thereby improving the model\u2019s recognition performance on small sample SAR target datasets. Finally, the model constructed in this paper is verified to be 97.97% on ten types of MSTAR datasets under standard operating conditions, reaching a mainstream target recognition rate. Meanwhile, the method presented in this paper shows strong robustness and generalization performance on a small number of randomly sampled SAR target datasets

    Crop classification of multitemporal PolSAR based on 3-D attention module with ViT

    Get PDF
    Multitemporal polarimertic SAR is considered to be very effective in crop classification and cultivated land detection, which has received much attention from researchers. Currently, for most multitemporal polarimetric SAR data classification methods, the simultaneous temporal–polarimetric–spatial feature extraction capability has not been exploited sufficiently. Also, the diversity of different time and different polarimetric features has not been taken into account sufficiently. In this letter, we propose a classification model that combines a dual-stream network as a temporal–polarimetric–spatial feature extraction module with vision transformer (ViT) called temporal–polarimetric–spatial transformer (TPST) to address the above problems. Second, a 3-D convolutional attention module that enables the network to weight the temporal dimension, polarimetric feature dimension and spatial dimension is developed, according to their importance. Experimental results on both the UAVSAR and RADARSAT-2 datasets show that the proposed method outperforms ResNet.This work was supported by the National Natural Science Foundation of China under Grant 62201027 and Grant 62271034.Peer ReviewedPostprint (author's final draft

    Pol-InSAR-Island - A benchmark dataset for multi-frequency Pol-InSAR data land cover classification

    Get PDF
    This paper presents Pol-InSAR-Island, the first publicly available multi-frequency Polarimetric Interferometric Synthetic Aperture Radar (Pol-InSAR) dataset labeled with detailed land cover classes, which serves as a challenging benchmark dataset for land cover classification. In recent years, machine learning has become a powerful tool for remote sensing image analysis. While there are numerous large-scale benchmark datasets for training and evaluating machine learning models for the analysis of optical data, the availability of labeled SAR or, more specifically, Pol-InSAR data is very limited. The lack of labeled data for training, as well as for testing and comparing different approaches, hinders the rapid development of machine learning algorithms for Pol-InSAR image analysis. The Pol-InSAR-Island benchmark dataset presented in this paper aims to fill this gap. The dataset consists of Pol-InSAR data acquired in S- and L-band by DLR\u27s airborne F-SAR system over the East Frisian island Baltrum. The interferometric image pairs are the result of a repeat-pass measurement with a time offset of several minutes. The image data are given as 6 × 6 coherency matrices in ground range on a 1 m × 1m grid. Pixel-accurate class labels, consisting of 12 different land cover classes, are generated in a semi-automatic process based on an existing biotope type map and visual interpretation of SAR and optical images. Fixed training and test subsets are defined to ensure the comparability of different approaches trained and tested prospectively on the Pol-InSAR-Island dataset. In addition to the dataset, results of supervised Wishart and Random Forest classifiers that achieve mean Intersection-over-Union scores between 24% and 67% are provided to serve as a baseline for future work. The dataset is provided via KITopenData: https://doi.org/10.35097/170

    Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources

    Get PDF
    Central to the looming paradigm shift toward data-intensive science, machine-learning techniques are becoming increasingly important. In particular, deep learning has proven to be both a major breakthrough and an extremely powerful tool in many fields. Shall we embrace deep learning as the key to everything? Or should we resist a black-box solution? These are controversial issues within the remote-sensing community. In this article, we analyze the challenges of using deep learning for remote-sensing data analysis, review recent advances, and provide resources we hope will make deep learning in remote sensing seem ridiculously simple. More importantly, we encourage remote-sensing scientists to bring their expertise into deep learning and use it as an implicit general model to tackle unprecedented, large-scale, influential challenges, such as climate change and urbanization

    Pol-InSAR-Island - A benchmark dataset for multi-frequency Pol-InSAR data land cover classification

    Get PDF
    This paper presents Pol-InSAR-Island, the first publicly available multi-frequency Polarimetric Interferometric Synthetic Aperture Radar (Pol-InSAR) dataset labeled with detailed land cover classes, which serves as a challenging benchmark dataset for land cover classification. In recent years, machine learning has become a powerful tool for remote sensing image analysis. While there are numerous large-scale benchmark datasets for training and evaluating machine learning models for the analysis of optical data, the availability of labeled SAR or, more specifically, Pol-InSAR data is very limited. The lack of labeled data for training, as well as for testing and comparing different approaches, hinders the rapid development of machine learning algorithms for Pol-InSAR image analysis. The Pol-InSAR-Island benchmark dataset presented in this paper aims to fill this gap. The dataset consists of Pol-InSAR data acquired in S- and L-band by DLR's airborne F-SAR system over the East Frisian island Baltrum. The interferometric image pairs are the result of a repeat-pass measurement with a time offset of several minutes. The image data are given as 6 × 6 coherency matrices in ground range on a 1 m × 1m grid. Pixel-accurate class labels, consisting of 12 different land cover classes, are generated in a semi-automatic process based on an existing biotope type map and visual interpretation of SAR and optical images. Fixed training and test subsets are defined to ensure the comparability of different approaches trained and tested prospectively on the Pol-InSAR-Island dataset. In addition to the dataset, results of supervised Wishart and Random Forest classifiers that achieve mean Intersection-over-Union scores between 24% and 67% are provided to serve as a baseline for future work. The dataset is provided via KITopenData: https://doi.org/10.35097/1700

    Smart environment monitoring through micro unmanned aerial vehicles

    Get PDF
    In recent years, the improvements of small-scale Unmanned Aerial Vehicles (UAVs) in terms of flight time, automatic control, and remote transmission are promoting the development of a wide range of practical applications. In aerial video surveillance, the monitoring of broad areas still has many challenges due to the achievement of different tasks in real-time, including mosaicking, change detection, and object detection. In this thesis work, a small-scale UAV based vision system to maintain regular surveillance over target areas is proposed. The system works in two modes. The first mode allows to monitor an area of interest by performing several flights. During the first flight, it creates an incremental geo-referenced mosaic of an area of interest and classifies all the known elements (e.g., persons) found on the ground by an improved Faster R-CNN architecture previously trained. In subsequent reconnaissance flights, the system searches for any changes (e.g., disappearance of persons) that may occur in the mosaic by a histogram equalization and RGB-Local Binary Pattern (RGB-LBP) based algorithm. If present, the mosaic is updated. The second mode, allows to perform a real-time classification by using, again, our improved Faster R-CNN model, useful for time-critical operations. Thanks to different design features, the system works in real-time and performs mosaicking and change detection tasks at low-altitude, thus allowing the classification even of small objects. The proposed system was tested by using the whole set of challenging video sequences contained in the UAV Mosaicking and Change Detection (UMCD) dataset and other public datasets. The evaluation of the system by well-known performance metrics has shown remarkable results in terms of mosaic creation and updating, as well as in terms of change detection and object detection
    • …
    corecore