3,259 research outputs found

    Path loss modeling for vehicular system performance and communicaitons protocols evaluation

    Full text link
    Vehicular communications are receiving considerable attention due to the introduction of the intelligent transportation system (ITS) concept, enabling smart and intelligent driving technologies and applications. To design, evaluate and optimize ITS applications and services oriented to improve vehicular safety, but also non-safety applications based on wireless systems, the knowledge of the propagation channel is vital. In particular, the mean path loss is one of the most important parameters used in the link budget, being a measure of the channel quality and limiting the maximum allowed distance between the transmitter (Tx) and the receiver (Rx). From a narrowband vehicular-to-vehicular (V2V) channel measurement campaign carried out at 5.9 GHz in three different urban environments characterized by high traffic density, this paper analyzes the path loss in terms of the Tx-Rx separation distance and fading statistics. Based on a linear slope model, values for the path loss exponent and the standard deviation of shadowing are reported. We have evaluated the packet error rate (PER) and the maximum achievable Tx-Rx separation distance for a PER threshold level of 10% according to the digital short-range communications (DSRC) specifications. The results reported here can be incorporated in an easy way to vehicular networks (VANETs) simulators in order to develop, evaluate and validate new protocols and systems architecture configurations under realistic propagation conditions.Fernández González, HA.; Rubio Arjona, L.; Reig, J.; Rodrigo Peñarrocha, VM.; Valero-Nogueira, A. (2013). Path loss modeling for vehicular system performance and communicaitons protocols evaluation. Mobile Networks and Applications. 18(6):755-765. doi:10.1007/s11036-013-0463-xS755765186Gallager B, Akatsuka H, Suzuki H (2006) Wireless communications for vehicle safety: radio link performance and wireless connectivity. IEEE Veh Technol Mag 1(4):4–24Rubio L, Reig J, Fernández H (2011) Propagation aspects in vehicular networks, Vehicular technologies. Almeida M (ed) InTechWang C-X, Vasilakos A, Murch R, Shen SGX, Chen W, Kosch T (2011) Guest editorial. Vehicular communications and networks – part I. IEEE J Select Areas Commun 29(1):1–6ASTM E2213-03 (2003) Standard specification for telecommunications and information exchange between roadside and vehicle systems – 5 GHz band Dedicated Short Range Communications (DSRC) Medium Access Control (MAC) and Physical Layer (PHY) specifications. American Society for Testing Materials (ASTM), West ConshohockenIEEE 1609 – Family of Standards for Wireless Access in Vehicular Environments (WAVE). [Online]. Available: http://www.standards.its.dot.govETSI TR 102 492–2 Part 2 (2006) Technical characteristics for Pan European Harminized Communications Equipment Operating in the 5 GHz frequency range intended for road safety and traffic management, and for non-safety related ITS applications, European Telecommunications Standard Institute (ETSI), Technical Report, Sophia Antipolis, FranceThe Car-to-Car Communication Comsortium (C2CC): http:/www.car-to-car.orgMecklenbräuker C, Molisch A, Karedal J, Tufvesson F, Paier A, Bernado L, Zemen T, Klemp O, Czink N (2011) Vehicular channel characterization and its implications for wireless system design and performance. IEEE Proc 99(7):1189–1212Ghafoor KZ, Bakar KA, Lloret J, Khokhar RH, Lee KC (2013) Intelligent beaconless geographical routing for urban vehicular environments. Int J Wireless Netw 19(3):345–362Ghafoor KZ, Lloret J, Bakar KA, Sadiq AS, Mussa SAB (2013) Beaconing approaches in vehicular ad hoc networks: a survey. Int J Wirel Pers Commun. Published Online (May 2013)Michelson DG, Ghassemzadeh SS (2009) New directions in wireless communications, Springer Science+Busines Media (Chapter 1)IEEE 802.11p (2010) Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments, Institute of Electrical and Electronic Engineers (IEEE), New York, USA.Karedal J, Czink N, Paier A, Tufvesson F, Moisch AF (2011) Path loss modeling for vehicle-to-vehicle communications. IEEE Trans Veh Technol 60(1):323–327Cheng L, Henty B, Stancil D, Bai F, Mudalige P (2007) Mobile vehicle-to-vehicle narrow-band channel measurement and characterization of the 5.9 GHz dedicated short range communication (DSRC) frequency band. IEEE J Select Areas Commun 25(8):1501–1516Cheng L, Henty B, Cooper R, Stancil D, Bai F (2008) Multi-path propagation measurements for vehicular networks at 5.9 GHz. IEEE Wireless Communications and Networking Conference, pp. 1239–1244Tan I, Tang W, Laberteaux K, Bahai N (2008) Measurement and analysis of wireless channel impairments in dsrc vehicular communications. IEEE International Conference on Communications, pp. 4882–4888.Campuzano AJ, Fernández H, Balaguer D, Vila-Jiménez A, Bernardo-Clemente B, Rodrigo-Peñarrocha VM, Reig J, Valero-Nogueira A, Rubio L (2012) Vehicular-to-vehicular channel characterization and measurement results. WAVES 4(1):14–24Kunisch J, Pamp J (2008) Wideband car-to-car radio channel measurements and model at 5.9 GHz. IEEE 68th Vehicular Technology Conference, pp. 1–5Gozalvez J, Sepulcre M (2007) Opportunistic technique for efficient wireless vehicular communications. IEEE Veh Technol Mag 2(4):33–39Zang Y, Stibor L, Orfanos G, Guo S, Reumerman H (2005) An error model for inter-vehicle communications in highway scenarios at 5.9 GHz. Proc. Int. Workshop on performance evaluation of wireless ad hoc, sensor, and ubiquitous networks, pp. 49–5

    A Measurement Based Shadow Fading Model for Vehicle-to-Vehicle Network Simulations

    Full text link
    The vehicle-to-vehicle (V2V) propagation channel has significant implications on the design and performance of novel communication protocols for vehicular ad hoc networks (VANETs). Extensive research efforts have been made to develop V2V channel models to be implemented in advanced VANET system simulators for performance evaluation. The impact of shadowing caused by other vehicles has, however, largely been neglected in most of the models, as well as in the system simulations. In this paper we present a shadow fading model targeting system simulations based on real measurements performed in urban and highway scenarios. The measurement data is separated into three categories, line-of-sight (LOS), obstructed line-of-sight (OLOS) by vehicles, and non line-of-sight due to buildings, with the help of video information recorded during the measurements. It is observed that vehicles obstructing the LOS induce an additional average attenuation of about 10 dB in the received signal power. An approach to incorporate the LOS/OLOS model into existing VANET simulators is also provided. Finally, system level VANET simulation results are presented, showing the difference between the LOS/OLOS model and a channel model based on Nakagami-m fading.Comment: 10 pages, 12 figures, submitted to Hindawi International Journal of Antennas and Propagatio

    Study on 3GPP Rural Macrocell Path Loss Models for Millimeter Wave Wireless Communications

    Full text link
    Little research has been done to reliably model millimeter wave (mmWave) path loss in rural macrocell settings, yet, models have been hastily adopted without substantial empirical evidence. This paper studies past rural macrocell (RMa) path loss models and exposes concerns with the current 3rd Generation Partnership Project (3GPP) TR 38.900 (Release 14) RMa path loss models adopted from the International Telecommunications Union - Radiocommunications (ITU-R) Sector. This paper shows how the 3GPP RMa large-scale path loss models were derived for frequencies below 6 GHz, yet they are being asserted for use up to 30 GHz, even though there has not been sufficient work or published data to support their validity at frequencies above 6 GHz or in the mmWave bands. We present the background of the 3GPP RMa path loss models and their use of odd correction factors not suitable for rural scenarios, and show that the multi-frequency close-in free space reference distance (CI) path loss model is more accurate and reliable than current 3GPP and ITU-R RMa models. Using field data and simulations, we introduce a new close-in free space reference distance with height dependent path loss exponent model (CIH), that predicts rural macrocell path loss using an effective path loss exponent that is a function of base station antenna height. This work shows the CI and CIH models can be used from 500 MHz to 100 GHz for rural mmWave coverage and interference analysis, without any discontinuity at 6 GHz as exists in today's 3GPP and ITU-R RMa models.Comment: To be published in 2017 IEEE International Conference on Communications (ICC), Paris, France, May 201

    The COST IRACON Geometry-based Stochastic Channel Model for Vehicle-to-Vehicle Communication in Intersections

    Full text link
    Vehicle-to-vehicle (V2V) wireless communications can improve traffic safety at road intersections and enable congestion avoidance. However, detailed knowledge about the wireless propagation channel is needed for the development and realistic assessment of V2V communication systems. We present a novel geometry-based stochastic MIMO channel model with support for frequencies in the band of 5.2-6.2 GHz. The model is based on extensive high-resolution measurements at different road intersections in the city of Berlin, Germany. We extend existing models, by including the effects of various obstructions, higher order interactions, and by introducing an angular gain function for the scatterers. Scatterer locations have been identified and mapped to measured multi-path trajectories using a measurement-based ray tracing method and a subsequent RANSAC algorithm. The developed model is parameterized, and using the measured propagation paths that have been mapped to scatterer locations, model parameters are estimated. The time variant power fading of individual multi-path components is found to be best modeled by a Gamma process with an exponential autocorrelation. The path coherence distance is estimated to be in the range of 0-2 m. The model is also validated against measurement data, showing that the developed model accurately captures the behavior of the measured channel gain, Doppler spread, and delay spread. This is also the case for intersections that have not been used when estimating model parameters.Comment: Submitted to IEEE Transactions on Vehicular Technolog

    Propagation Aspects in Vehicular Networks

    Get PDF

    Fine-Grained vs. Average Reliability for V2V Communications around Intersections

    Full text link
    Intersections are critical areas of the transportation infrastructure associated with 47% of all road accidents. Vehicle-to-vehicle (V2V) communication has the potential of preventing up to 35% of such serious road collisions. In fact, under the 5G/LTE Rel.15+ standardization, V2V is a critical use-case not only for the purpose of enhancing road safety, but also for enabling traffic efficiency in modern smart cities. Under this anticipated 5G definition, high reliability of 0.99999 is expected for semi-autonomous vehicles (i.e., driver-in-the-loop). As a consequence, there is a need to assess the reliability, especially for accident-prone areas, such as intersections. We unpack traditional average V2V reliability in order to quantify its related fine-grained V2V reliability. Contrary to existing work on infinitely large roads, when we consider finite road segments of significance to practical real-world deployment, fine-grained reliability exhibits bimodal behavior. Performance for a certain vehicular traffic scenario is either very reliable or extremely unreliable, but nowhere in relative proximity to the average performance.Comment: 5 pages, 4 figures. arXiv admin note: substantial text overlap with arXiv:1706.1001

    In-vehicle channel sounding in the 5.8-GHz band

    Get PDF
    The article reports vehicular channel measurements in the frequency band of 5.8 GHz for IEEE 802.11p standard. Experiments for both intra-vehicle and out-of-vehicle environments were carried out. It was observed that the large-scale variations (LSVs) of the power delay profiles (PDPs) can be best described through a two-term exponential decay model, in contrast to the linear models which are suitable for popular ultra-wideband (UWB) systems operating in the 3- to 11-GHz band. The small-scale variations (SSVs) are separated from the PDP by subtracting the LSV and characterized utilizing logistic, generalized extreme value (GEV), and normal distributions. Two sample Kolmogorov-Smirnov (K-S) tests validated that the logistic distribution is optimal for in-car, whereas the GEV distribution serves better for out-of-car measurements. For each measurement, the LSV trend was used to construct the respective channel impulse response (CIR), i.e., tap gains at different delays. Next, the CIR information is fed to an 802.11p simulation testbed to evaluate the bit error rate (BER) performance, following a Rician model. The BER results strongly vouch for the suitability of the protocol for in-car as well as out-of-car wireless applications in stationary environments.The article reports vehicular channel measurements in the frequency band of 5.8 GHz for IEEE 802.11p standard. Experiments for both intra-vehicle and out-of-vehicle environments were carried out. It was observed that the large-scale variations (LSVs) of the power delay profiles (PDPs) can be best described through a two-term exponential decay model, in contrast to the linear models which are suitable for popular ultra-wideband (UWB) systems operating in the 3- to 11-GHz band. The small-scale variations (SSVs) are separated from the PDP by subtracting the LSV and characterized utilizing logistic, generalized extreme value (GEV), and normal distributions. Two sample Kolmogorov-Smirnov (K-S) tests validated that the logistic distribution is optimal for in-car, whereas the GEV distribution serves better for out-of-car measurements. For each measurement, the LSV trend was used to construct the respective channel impulse response (CIR), i.e., tap gains at different delays. Next, the CIR information is fed to an 802.11p simulation testbed to evaluate the bit error rate (BER) performance, following a Rician model. The BER results strongly vouch for the suitability of the protocol for in-car as well as out-of-car wireless applications in stationary environments
    corecore