185 research outputs found

    Multi-Party Computation for Modular Exponentiation Based on Replicated Secret Sharing

    Get PDF
    In recent years, multi-party computation (MPC) frameworks based on replicated secret sharing schemes (RSSS) have attracted the attention as a method to achieve high efficiency among known MPCs. However, the RSSS-based MPCs are still inefficient for several heavy computations like algebraic operations, as they require a large amount and number of communication proportional to the number of multiplications in the operations (which is not the case with other secret sharing-based MPCs). In this paper, we propose RSSS-based three-party computation protocols for modular exponentiation, which is one of the most popular algebraic operations, on the case where the base is public and the exponent is private. Our proposed schemes are simple and efficient in both of the asymptotic and practical sense. On the asymptotic efficiency, the proposed schemes require O(n)-bit communication and O(1) rounds,where n is the secret-value size, in the best setting, whereas the previous scheme requires O(n^2)-bit communication and O(n) rounds. On the practical efficiency, we show the performance of our protocol by experiments on the scenario for distributed signatures, which is useful for secure key management on the distributed environment (e.g., distributed ledgers). As one of the cases, our implementation performs a modular exponentiation on a 3,072-bit discrete-log group and 256-bit exponent with roughly 300ms, which is an acceptable parameter for 128-bit security, even in the WAN setting

    Secure Quantized Training for Deep Learning

    Get PDF
    We have implemented training of neural networks in secure multi-party computation (MPC) using quantization commonly used in the said setting. To the best of our knowledge, we are the first to present an MNIST classifier purely trained in MPC that comes within 0.2 percent of the accuracy of the same convolutional neural network trained via plaintext computation. More concretely, we have trained a network with two convolution and two dense layers to 99.2% accuracy in 25 epochs. This took 3.5 hours in our MPC implementation (under one hour for 99% accuracy).Comment: 17 page

    How to Incentivize Data-Driven Collaboration Among Competing Parties

    Full text link
    The availability of vast amounts of data is changing how we can make medical discoveries, predict global market trends, save energy, and develop educational strategies. In some settings such as Genome Wide Association Studies or deep learning, sheer size of data seems critical. When data is held distributedly by many parties, they must share it to reap its full benefits. One obstacle to this revolution is the lack of willingness of different parties to share data, due to reasons such as loss of privacy or competitive edge. Cryptographic works address privacy aspects, but shed no light on individual parties' losses/gains when access to data carries tangible rewards. Even if it is clear that better overall conclusions can be drawn from collaboration, are individual collaborators better off by collaborating? Addressing this question is the topic of this paper. * We formalize a model of n-party collaboration for computing functions over private inputs in which participants receive their outputs in sequence, and the order depends on their private inputs. Each output "improves" on preceding outputs according to a score function. * We say a mechanism for collaboration achieves collaborative equilibrium if it ensures higher reward for all participants when collaborating (rather than working alone). We show that in general, computing a collaborative equilibrium is NP-complete, yet we design efficient algorithms to compute it in a range of natural model settings. Our collaboration mechanisms are in the standard model, and thus require a central trusted party; however, we show this assumption is unnecessary under standard cryptographic assumptions. We show how to implement the mechanisms in a decentralized way with new extensions of secure multiparty computation that impose order/timing constraints on output delivery to different players, as well as privacy and correctness

    When the Hammer Meets the Nail: Multi-Server PIR for Database-Driven CRN with Location Privacy Assurance

    Full text link
    We show that it is possible to achieve information theoretic location privacy for secondary users (SUs) in database-driven cognitive radio networks (CRNs) with an end-to-end delay less than a second, which is significantly better than that of the existing alternatives offering only a computational privacy. This is achieved based on a keen observation that, by the requirement of Federal Communications Commission (FCC), all certified spectrum databases synchronize their records. Hence, the same copy of spectrum database is available through multiple (distinct) providers. We harness the synergy between multi-server private information retrieval (PIR) and database- driven CRN architecture to offer an optimal level of privacy with high efficiency by exploiting this observation. We demonstrated, analytically and experimentally with deployments on actual cloud systems that, our adaptations of multi-server PIR outperform that of the (currently) fastest single-server PIR by a magnitude of times with information theoretic security, collusion resiliency, and fault-tolerance features. Our analysis indicates that multi-server PIR is an ideal cryptographic tool to provide location privacy in database-driven CRNs, in which the requirement of replicated databases is a natural part of the system architecture, and therefore SUs can enjoy all advantages of multi-server PIR without any additional architectural and deployment costs.Comment: 10 pages, double colum

    Secure Poisson Regression

    Get PDF
    We introduce the first construction for secure two-party computation of Poisson regression, which enables two parties who hold shares of the input samples to learn only the resulting Poisson model while protecting the privacy of the inputs. Our construction relies on new protocols for secure fixed-point exponentiation and correlated matrix multiplications. Our secure exponentiation construction avoids expensive bit decomposition and achieves orders of magnitude improvement in both online and offline costs over state of the art works. As a result, the dominant cost for our secure Poisson regression are matrix multiplications with one fixed matrix. We introduce a new technique, called correlated Beaver triples, which enables many such multiplications at the cost of roughly one matrix multiplication. This further brings down the cost of secure Poisson regression. We implement our constructions and show their extreme efficiency. In a LAN setting, our secure exponentiation for 20-bit fractional precision takes less than 0.07ms with a batch-size of 100,000. One iteration of secure Poisson regression on a dataset with 10,000 samples with 1000 binary features needs about 65.82s in the offline phase, 55.14s in the online phase and 17MB total communication. For several real datasets this translates into training that takes seconds and only a couple of MB communication

    Efficient secure comparison in the dishonest majority model

    Get PDF
    Secure comparison (SC) is an essential primitive in Secure Multiparty Computation (SMC) and a fundamental building block in Privacy-Preserving Data Analytics (PPDA). Although secure comparison has been studied since the introduction of SMC in the early 80s and many protocols have been proposed, there is still room for improvement, especially providing security against malicious adversaries who form the majority among the participating parties. It is not hard to develop an SC protocol secure against malicious majority based on the current state-of-the-art SPDZ framework. SPDZ is designed to work for arbitrary polynomially-bounded functionalities; it may not provide the most efficient SMC implementation for a specific task, such as SC. In this thesis, we propose a novel and efficient compiler specifically designed to convert most existing SC protocols with semi-honest security into the ones secure against the dishonest majority (malicious majority). We analyze the security of the proposed solutions using the real-ideal paradigm. Moreover, we provide computation and communication complexity analysis. Comparing to the current state-of-the-art SC protocols Rabbit and edaBits, our design offers significant performance gain. The empirical results show that the proposed solution is at least 5 and 10 times more efficient than Rabbit in run-time and communication cost respectively.Includes bibliographical references

    RSA Power Analysis Obfuscation: A Dynamic FPGA Architecture

    Get PDF
    The modular exponentiation operation used in popular public key encryption schemes, such as RSA, has been the focus of many side channel analysis (SCA) attacks in recent years. Current SCA attack countermeasures are largely static. Given sufficient signal-to-noise ratio and a number of power traces, static countermeasures can be defeated, as they merely attempt to hide the power consumption of the system under attack. This research develops a dynamic countermeasure which constantly varies the timing and power consumption of each operation, making correlation between traces more difficult than for static countermeasures. By randomizing the radix of encoding for Booth multiplication and randomizing the window size in exponentiation, this research produces a SCA countermeasure capable of increasing RSA SCA attack protection

    Group key establishment protocols: Pairing cryptography and verifiable secret sharing scheme

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2013Includes bibliographical references (leaves: 97-103)Text in English; Abstract: Turkish and Englishx, 154 leavesThe aim of this study is to establish a common secret key over an open network for a group of user to be used then symmetrical secure communication between them. There are two methods of GKE protocol which are key agreement and key distribution. Key agreement is a mechanism whereby the parties jointly establish a common secret. As to key distribution, it is a mechanism whereby one of the parties creates or obtains a secret value and then securely distributes it to other parties. In this study, both methods is applied and analyzed in two different GKE protocols. Desirable properties of a GKE are security and efficiency. Security is attributed in terms of preventing attacks against passive and active adversary. Efficiency is quantified in terms of computation, communication and round complexity. When constructing a GKE, the challenge is to provide security and efficiency according to attributed and quantified terms. Two main cryptographic tools are selected in order to handle the defined challenge. One of them is bilinear pairing which is based on elliptic curve cryptography and another is verifiable secret sharing which is based on multiparty computation. In this thesis, constructions of these two GKE protocols are studied along with their communication models, security and efficiency analysis. Also, an implementation of four-user group size is developed utilizing PBC, GMP and OpenSSL Libraries for both two protocols

    Improved Distributed RSA Key Generation Using the Miller-Rabin Test

    Get PDF
    Secure distributed generation of RSA moduli (e.g., generating N=pqN=pq where none of the parties learns anything about pp or qq) is an important cryptographic task, that is needed both in threshold implementations of RSA-based cryptosystems and in other, advanced cryptographic protocols that assume that all the parties have access to a trusted RSA modulo. In this paper, we provide a novel protocol for secure distributed RSA key generation based on the Miller-Rabin test. Compared with the more commonly used Boneh-Franklin test (which requires many iterations), the Miller-Rabin test has the advantage of providing negligible error after even a single iteration of the test for large enough moduli (e.g., 40964096 bits). From a technical point of view, our main contribution is a novel divisibility test which allows to perform the primality test in an efficient way, while keeping pp and qq secret. Our semi-honest RSA generation protocol uses any underlying secure multiplication protocol in a black-box way, and our protocol can therefore be instantiated in both the honest or dishonest majority setting based on the chosen multiplication protocol. Our semi-honest protocol can be upgraded to protect against active adversaries at low cost using existing compilers. Finally, we provide an experimental evaluation showing that for the honest majority case, our protocol is much faster than Boneh-Franklin
    corecore