195 research outputs found

    Performance Analysis of Reuse Distance in Cooperative Broadcasting

    Get PDF

    Self-organizing Fast Routing Protocols for Underwater Acoustic Communications Networks

    Get PDF
    To address this problem, in this thesis we propose a cross-layer proactive routing initialization mechanism that does not require additional measurements and, at the same time, is energy efficient. Two routing protocols are proposed: Self-Organized Fast Routing Protocol for Radial Underwater Networks (SOFRP) for radial topology and Self-organized Proactive Routing Protocol for Non-uniformly Deployed Underwater Networks (SPRINT) for a randomly deployed network. SOFRP is based on the algorithm to recreate a radial topology with a gateway node, such that packets always use the shortest possible path from source to sink, thus minimizing consumed energy. Collisions are avoided as much as possible during the path initialization. The algorithm is suitable for 2D or 3D areas, and automatically adapts to a varying number of nodes. In SPRINT the routing path to the gateway is formed on the basis of the distance, measured by the signal strength received. The data sending node prefers to choose the neighbor node which is closest to it. It is designed to achieve high data throughput and low energy consumption of the nodes. There is a tradeoff between the throughput and the energy consumption: more distance needs more transmission energy, and more relay nodes (hops) to the destination node affects the throughput. Each hop increases the packet delay and decreases the throughput. Hence, energy consumption requires nearest nodes to be chosen as forwarding node whereas the throughput requires farthest node to be selected to minimize the number of hops. Fecha de lectura de Tesis Doctoral: 11 mayo 2020Underwater Wireless Sensor Networks (UWSNs) constitute an emerging technology for marine surveillance, natural disaster alert and environmental monitoring. Unlike terrestrial Wireless Sensor Networks (WSNs), electromagnetic waves cannot propagate more than few meters in water (high absorption rate). However, acoustic waves can travel long distances in underwater. Therefore, acoustic waves are preferred for underwater communications, but they travel very slow compare to EM waves (typical speed in water is 1500 m/s against 2x10^8 m/s for EM waves). This physical effect makes a high propagation delay and cannot be avoided, but the end-to-end packet delay it can be reduced. Routing delay is one of the major factors in end-to-end packet delay. In reactive routing protocols, when a packet arrives to a node, the node takes some time to select the node to which the data packet would be forwarded. We may reduce the routing delay for time-critical applications by using proactive routing protocols. Other two critical issues in UWSNs are determining the position of the nodes and time synchronization. Wireless sensor nodes need to determine the position of the surrounding nodes to select the next node in the path to reach the sink node. A Global Navigation Satellite System (GNSS) cannot be used because of the very short underwater range of the GNSS signal. Timestamping to estimate the distance is possible but the limited mobility of the UWSN nodes and variation in the propagation speed of the acoustic waves make the time synchronization a challenging task. For these reasons, terrestrial WSN protocols cannot be readily used for underwater acoustic networks

    CROSS-LAYER RESOURCE ALLOCATION ALGORITHMS IN WIRELESS NETWORKS WITH ANTENNA ARRAYS

    Get PDF
    The application of antenna array is a promising approach to improving the capacity of a wireless network. In this dissertation, we study the application of antenna arrays at the base stations (BSs) in a wireless cellular network. We focus on the downlink transmission. This application requires the BSs be aware of the locations and channel conditions of the mobile users. Towards this end, we propose a family of MAC layer protocols that enable a base station to learn the locations and channel conditions of a number of intended users. Our simulation results demonstrate that the inter-cell interference significantly degrades the system performance of the previously proposed beamforming algorithms in terms of packet loss probability (PLP) in a multi-cell environment. To cope with inter-cell interference, we propose beamforming algorithms that achieve target PLP in the presence of random inter-cell interference. The application of antenna array on the physical layer has great impact on the protocols of higher layers. Novel MAC algorithms and protocols need to be designed to take advantage of the capacity enhancement provided by antenna array on the physical layer. In this dissertation, the issue of designing a downlink scheduling policy with base station antenna arrays is studied. We derive an optimal scheduling policy that achieves the throughput region. Then, based on the structure of the derived optimal policy, we propose two heuristic scheduling algorithms. The interference experienced by each node in an ad-hoc network exhibits stochastic nature similar to the inter-cell interference in a cellular network. We propose a power control algorithm in a distributed scheme to achieve target PLP. Furthermore, the proposed power control algorithm is shown to minimize the aggregate transmission power given the PLP constraint. In the above problems, we mainly consider the non-real-time traffic where throughput is the QoS parameter of concern. On the other hand, delay is an important QoS parameter for real time traffic. In this dissertation, we also consider the scheduling of real time packets by a BS with awareness of physical layer channel conditions of different users

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Facilitating wireless coexistence research

    Get PDF

    Network Coding-aware Lifetime Maximal routing in Multi-hop Static Wireless Ad-hoc Networks

    Get PDF
    In this paper, we address the issue of maximizing the lifetime of a static wireless ad-hoc network wherein the nodes are battery powered and have limited energy. In such scenarios, routing the traffic along shortest paths will lead to over-use of some nodes leading to premature network partition and an eventual end of communication. Network Coding is a promising technique that has been used, of late, by researchers for throughput improvement. We propose an algorithm that exploits network coding to route a set of unicast traffic demands, the objective being network lifetime maximization. The routing algorithm uses a link metric that takes care of the communication power consumption, the residual energy at the nodes and also the potential coding opportunities available at the node. Simulation results show that this algorithm enhances the network lifetime compared to the existing algorithms that do not employ network coding
    corecore