38,452 research outputs found

    Energy Efficient Coordinated Beamforming for Multi-cell MISO Systems

    Full text link
    In this paper, we investigate the optimal energy efficient coordinated beamforming in multi-cell multiple-input single-output (MISO) systems with KK multiple-antenna base stations (BS) and KK single-antenna mobile stations (MS), where each BS sends information to its own intended MS with cooperatively designed transmit beamforming. We assume single user detection at the MS by treating the interference as noise. By taking into account a realistic power model at the BS, we characterize the Pareto boundary of the achievable energy efficiency (EE) region of the KK links, where the EE of each link is defined as the achievable data rate at the MS divided by the total power consumption at the BS. Since the EE of each link is non-cancave (which is a non-concave function over an affine function), characterizing this boundary is difficult. To meet this challenge, we relate this multi-cell MISO system to cognitive radio (CR) MISO channels by applying the concept of interference temperature (IT), and accordingly transform the EE boundary characterization problem into a set of fractional concave programming problems. Then, we apply the fractional concave programming technique to solve these fractional concave problems, and correspondingly give a parametrization for the EE boundary in terms of IT levels. Based on this characterization, we further present a decentralized algorithm to implement the multi-cell coordinated beamforming, which is shown by simulations to achieve the EE Pareto boundary.Comment: 6 pages, 2 figures, to be presented in IEEE GLOBECOM 201

    D-SPACE4Cloud: A Design Tool for Big Data Applications

    Get PDF
    The last years have seen a steep rise in data generation worldwide, with the development and widespread adoption of several software projects targeting the Big Data paradigm. Many companies currently engage in Big Data analytics as part of their core business activities, nonetheless there are no tools and techniques to support the design of the underlying hardware configuration backing such systems. In particular, the focus in this report is set on Cloud deployed clusters, which represent a cost-effective alternative to on premises installations. We propose a novel tool implementing a battery of optimization and prediction techniques integrated so as to efficiently assess several alternative resource configurations, in order to determine the minimum cost cluster deployment satisfying QoS constraints. Further, the experimental campaign conducted on real systems shows the validity and relevance of the proposed method

    CoreTSAR: Task Scheduling for Accelerator-aware Runtimes

    Get PDF
    Heterogeneous supercomputers that incorporate computational accelerators such as GPUs are increasingly popular due to their high peak performance, energy efficiency and comparatively low cost. Unfortunately, the programming models and frameworks designed to extract performance from all computational units still lack the flexibility of their CPU-only counterparts. Accelerated OpenMP improves this situation by supporting natural migration of OpenMP code from CPUs to a GPU. However, these implementations currently lose one of OpenMP’s best features, its flexibility: typical OpenMP applications can run on any number of CPUs. GPU implementations do not transparently employ multiple GPUs on a node or a mix of GPUs and CPUs. To address these shortcomings, we present CoreTSAR, our runtime library for dynamically scheduling tasks across heterogeneous resources, and propose straightforward extensions that incorporate this functionality into Accelerated OpenMP. We show that our approach can provide nearly linear speedup to four GPUs over only using CPUs or one GPU while increasing the overall flexibility of Accelerated OpenMP
    • …
    corecore