1,338 research outputs found

    Task Graph offloading via Deep Reinforcement Learning in Mobile Edge Computing

    Full text link
    Various mobile applications that comprise dependent tasks are gaining widespread popularity and are increasingly complex. These applications often have low-latency requirements, resulting in a significant surge in demand for computing resources. With the emergence of mobile edge computing (MEC), it becomes the most significant issue to offload the application tasks onto small-scale devices deployed at the edge of the mobile network for obtaining a high-quality user experience. However, since the environment of MEC is dynamic, most existing works focusing on task graph offloading, which rely heavily on expert knowledge or accurate analytical models, fail to fully adapt to such environmental changes, resulting in the reduction of user experience. This paper investigates the task graph offloading in MEC, considering the time-varying computation capabilities of edge computing devices. To adapt to environmental changes, we model the task graph scheduling for computation offloading as a Markov Decision Process (MDP). Then, we design a deep reinforcement learning algorithm (SATA-DRL) to learn the task scheduling strategy from the interaction with the environment, to improve user experience. Extensive simulations validate that SATA-DRL is superior to existing strategies in terms of reducing average makespan and deadline violation.Comment: 13 figure

    Multi-Objective Robust Workflow Offloading in Edge-to-Cloud Continuum

    Get PDF
    Workflow offloading in the edge-to-cloud continuum copes with an extended calculation network among edge devices and cloud platforms. With the growing significance of edge and cloud technologies, workflow offloading among these environments has been investigated in recent years. However, the dynamics of offloading optimization objectives, i.e., latency, resource utilization rate, and energy consumption among the edge and cloud sides, have hardly been researched. Consequently, the Quality of Service(QoS) and offloading performance also experience uncertain deviation. In this work, we propose a multi-objective robust offloading algorithm to address this issue, dealing with dynamics and multi-objective optimization. The workflow request model in this work is modeled as Directed Acyclic Graph(DAG). An LSTM-based sequence-to-sequence neural network learns the offloading policy. We then conduct comprehensive implementations to validate the robustness of our algorithm. As a result, our algorithm achieves better offloading performance regarding each objective and faster adaptation to newly changed environments than fine-tuned typical singleobjective RL-based offloading methods
    • …
    corecore