1,584 research outputs found

    Performance-based control system design automation via evolutionary computing

    Get PDF
    This paper develops an evolutionary algorithm (EA) based methodology for computer-aided control system design (CACSD) automation in both the time and frequency domains under performance satisfactions. The approach is automated by efficient evolution from plant step response data, bypassing the system identification or linearization stage as required by conventional designs. Intelligently guided by the evolutionary optimization, control engineers are able to obtain a near-optimal ‘‘off-thecomputer’’ controller by feeding the developed CACSD system with plant I/O data and customer specifications without the need of a differentiable performance index. A speedup of near-linear pipelineability is also observed for the EA parallelism implemented on a network of transputers of Parsytec SuperCluster. Validation results against linear and nonlinear physical plants are convincing, with good closed-loop performance and robustness in the presence of practical constraints and perturbations

    Optimizing Three-Tank Liquid Level Control: Insights from Prairie Dog Optimization

    Get PDF
    The management of chemical process liquid levels poses a significant challenge in industrial process control, affecting the efficiency and stability of various sectors such as food processing, nuclear power generation, and pharmaceutical industries. While Proportional-Integral-Derivative (PID) control is a widely-used technique for maintaining liquid levels in tanks, its efficacy in optimizing complex and nonlinear systems has limitations. To overcome this, researchers are exploring the potential of metaheuristic algorithms, which offer robust optimization capabilities. This study introduces a novel approach to liquid level control using the Prairie Dog Optimization (PDO) algorithm, a metaheuristic algorithm inspired by prairie dog behavior. The primary objective is to design and implement a PID-controlled three-tank liquid level system that leverages PDO to regulate liquid levels effectively, ensuring enhanced stability and performance. The performance of the proposed system is evaluated using the ZLG criterion, a time domain metric-based objective function that quantifies the system's efficiency in maintaining desired liquid levels. Several analysis techniques are employed to understand the behavior of the system. Convergence curve analysis assesses the PDO-controlled system's convergence characteristics, providing insights into its efficiency and stability. Statistical analysis determines the algorithm's reliability and robustness across multiple runs. Stability analysis from both time and frequency response perspectives further validates the system's performance. A comprehensive comparison study with state-of-the-art metaheuristic algorithms, including AOA-HHO, CMA-ES, PSO, and ALC-PSODE, is conducted to benchmark the performance of PDO. The results highlight PDO's superior convergence, stability, and optimization capabilities, establishing its efficacy in real-world industrial applications. The research findings underscore the potential of PDO in PID control applications for three-tank liquid level systems. By outperforming benchmark algorithms, PDO demonstrates its value in industrial control scenarios, contributing to the advancement of metaheuristic-based control techniques and process optimization. This study opens avenues for engineers and practitioners to harness advanced control solutions, thereby enhancing industrial processes and automation

    Comparison of LQR and PID Controller Tuning Using PSO for Coupled Tank System

    Get PDF
    Coupled Tank System is one of the widely used applications in industries. Like other process control, it require suitable controller to obtain the good system performances. Hence, this paper presents the study of Coupled Tank System using LQR and PID controller. Both controller parameters are tuned using Single-Objective Particle Swarm Optimization (PSO). The performance of the system is compared based on the transient response in term of of Rise Time (Tr), SettlingTime (Ts), Steady State Error (ess) and Overshoot (OS).Simulation is conducted within MATLAB environment to verify the performances of the system. The result shows that both controller can be tuned using PSO, while LQR controller give slightly better results compared to PID controller

    GA-Based Optimization for Multivariable Level Control System: A Case Study of Multi-Tank System

    Get PDF
    This paper presents a systematic way to determine the trade-off optimized controller tunings using computation optimization technique for both servo and regulatory controls of the Multi-Tank System, as one of the applications under the multivariable loop principle. The paper describes an improved way to obtain the best Proportional-Integral (PI) controller tunings in reducing the dependency on engineering knowledge, practical experiences and complex mathematical calculations. Relative Gain Array (RGA) calculation justified the degree of relation and the best pairing for both interacted control loops. Genetic Algorithm (GA), as one of the most prestigious techniques, was used to analyze the best controller tunings based on factor parameters of iterations, populations and mutation rates to the applied First Order plus Dead Time (FOPDT) models in the multivariable loop. Amid simulation analysis, GA analysis’s reliability was justified by comparing its performance with the Particle Swarm Optimization (PSO) analysis. The research outcome was visualized by generating the process responses from the LOOP-PRO’s multi-tank function, whereby the GA tunings’ responses were compared with the conventional tuning methods. In conclusion, the result exhibits that the GA optimization analysis has successfully demonstrated the most satisfactory performance for both servo and regulatory controls

    IMC Based Fractional Order Controller for Three Interacting Tank Process

    Get PDF
    In model based control, performance of the controlled plant considerably depends on the accuracy of real plant being modelled. In present work, an attempt has been made to design Internal Model Control (IMC), for three interacting tank process for liquid level control. To avoid complexities in controller design, the third order three interacting tank process is modelled to First Order Plus Dead Time (FOPDT) model. Exploiting the admirable features of Fractional Calculus, the higher order model is also modelled to Fractional Order First Order Plus Dead Time (FO-FOPDT) model, which further reduces the modelling error. Moving to control section, different IMC schemes have been proposed, where the fractional order filter is introduced along with the conventional integer order filter. Various simulations have been performed to show the greatness of Fractional order modelled system & fractional order filters over conventional integer order modelled system & integer order filters respectively. Both for parameters estimation of reduced order model and filter tuning, Genetic Algorithm (GA) is being applied. 

    Spider Search Algorithms for MIMO System and Assessment Using Simatic PCS7

    Get PDF
    This paper shows two optimization methods that are built on a spider optimization algorithm to enhance the proportional integral and derivative (PID) gain values for multiple-input-multiple-output (MIMO) arrangement which is automated with SIMATIC PCS7 Distributed Control System (SDCS). The leading methodologies are the Spider Search Algorithm (SSA) and Social Spider Optimization (SSO) which is meant primarily for optimizing PID gain values. The SSA is based on foraging strategy of colonial spiders and SSO works on the combined plan of the male and female spiders that removes the episodes of local optimization and exploration elusion. Thus, SSA and SSO are contrived for the ideal fine-tuning of PID conditions in the benchmark MIMO procedure. The system performance is understood by minimizing the integral absolute error (IAE) and the integral square error (ISE) as its objective functions. The time-domain features are examined for the aforesaid methods and thereafter compared with the previous genetic algorithm (GA). The settling time is 60s for the proposed method which is lesser than the other techniques. For illustrating the implemented controller\u27s strength, interference is manually presented in the real-time system. Findings indicate that the SSO surpasses output measures and performance indices beyond the presupposed SSA and GA intervals

    Switching control systems and their design automation via genetic algorithms

    Get PDF
    The objective of this work is to provide a simple and effective nonlinear controller. Our strategy involves switching the underlying strategies in order to maintain a robust control. If a disturbance moves the system outside the region of stability or the domain of attraction, it will be guided back onto the desired course by the application of a different control strategy. In the context of switching control, the common types of controller present in the literature are based either on fuzzy logic or sliding mode. Both of them are easy to implement and provide efficient control for non-linear systems, their actions being based on the observed input/output behaviour of the system. In the field of fuzzy logic control (FLC) using error feedback variables there are two main problems. The first is the poor transient response (jerking) encountered by the conventional 2-dimensional rule-base fuzzy PI controller. Secondly, conventional 3-D rule-base fuzzy PID control design is both computationally intensive and suffers from prolonged design times caused by a large dimensional rule-base. The size of the rule base will increase exponentially with the increase of the number of fuzzy sets used for each input decision variable. Hence, a reduced rule-base is needed for the 3-term fuzzy controller. In this thesis a direct implementation method is developed that allows the size of the rule-base to be reduced exponentially without losing the features of the PID structure. This direct implementation method, when applied to the reduced rule-base fuzzy PI controller, gives a good transient response with no jerking

    Data driven neuroendocrine pid controller for mimo plants based adaptive safe experimentation dynamics algorithm

    Get PDF
    This study focused on data-driven tools and controller structure in the data-driven control scheme. Data-driven tools are an optimization method to find the optimal controller parameters using the system’s input and output data. Meanwhile, the controller structure refers to the controller design that is highly dependent on the input and output system. The existing data-driven neuroendocrine-PID (NEPID) utilizes the simultaneous perturbation stochastic approximation (SPSA) algorithm as the data-driven tool. However, this SPSA-based method is unable to find the optimal value of the design parameter due to unstable convergence obtained that degrades the controller performance in MIMO systems. Thus, a safe experimentation dynamics (SED) algorithm is selected to solve this unstable convergence but still not enough to achieve high accuracy because the update designed parameter only depends on the fixed step size gain. For the controller structure, the hormone secretion rate parameter of the existing NEPID is constant during the experimental time. However, control accuracy is insufficient because the secretion rate and control variable error are not able to interact directly and limits the controller capability. Besides, in the existing NEPID controller structure of the SISO system, only a single node of hormone regulation is used due to a single control variable. Meanwhile, in the MIMO systems, many control variables available that interact with each other, and the single node hormone regulation of NEPID is still inadequate in producing better control accuracy of nonlinear MIMO systems. Therefore, this study proposed the adaptive safe experimentation dynamics (ASED) algorithm to improve the SED algorithm performance accuracy by minimizing its objective function in terms of mean, best, worst, and standard deviation analysis. In order to increase the control accuracy of the existing NEPID controller, this study also established the sigmoid-based secretion rate neuroendocrine- PID (SbSR-NEPID) controller structure by varying the hormone secretion rate according to the change of error. Finally, this study also focused on developing a multiple node hormone regulation neuroendocrine-PID (MnHR–NEPID) controller structure to improve the control accuracy of existing NEPID by prioritizing the control regulation of each node from their level of error. The performance of PID and NEPID controllers was compared with those of SbSR-NEPID and MnHR-NEPID performances based on error and input tracking. The results show that the ASED- and SED-based methods produced stable convergence. The ASED-based method provided better tracking performance than the SED method by obtaining the objective function’s lower values. Besides, from the simulation work, the SbSR-NEPID and MnHR-NEPID designs provided better control accuracy in terms of lower objective function, total norm of error, and total norm of input compared to those of the PID and NEPID controllers. Moreover, the SbSR-NEPID controller achieved control accuracy improvement of 4.95% and 5.89% for the container gantry crane and TRMS systems, respectively. Besides, the MnHR-NEPID controller achieved control accuracy improvement of 5.7% and 5.1% for the container gantry crane and TRMS systems, respectively. The ASED-based method significantly improved the SED method’s accuracy by using adaptive terms based on changing the objective function in the updated procedure. Besides, the SbSR-NEPID was effective in reducing the error in a transient state, and MnHR-NEPID provided effective interaction between nodes available in MIMO systems which contributed to accuracy improvement

    NON-LINEAR MODEL PREDICTIVE CONTROL STRATEGIES FOR PROCESS PLANTS USING SOFT COMPUTING APPROACHES

    Get PDF
    The developments of advanced non-linear control strategies have attracted a considerable research interests over the past decades especially in process control. Rather than an absolute reliance on mathematical models of process plants which often brings discrepancies especially owing to design errors and equipment degradation, non-linear models are however required because they provide improved prediction capabilities but they are very difficult to derive. In addition, the derivation of the global optimal solution gets more difficult especially when multivariable and non-linear systems are involved. Hence, this research investigates soft computing techniques for the implementation of a novel real time constrained non-linear model predictive controller (NMPC). The time-frequency localisation characteristics of wavelet neural network (WNN) were utilised for the non-linear models design using system identification approach from experimental data and improve upon the conventional artificial neural network (ANN) which is prone to low convergence rate and the difficulties in locating the global minimum point during training process. Salient features of particle swarm optimisation and a genetic algorithm (GA) were combined to optimise the network weights. Real time optimisation occurring at every sampling instant is achieved using a GA to deliver results both in simulations and real time implementation on coupled tank systems with further extension to a complex quadruple tank process in simulations. The results show the superiority of the novel WNN-NMPC approach in terms of the average controller energy and mean squared error over the conventional ANN-NMPC strategies and PID control strategy for both SISO and MIMO systemsPetroleum Training Development Fun

    Evolutionary learning and global search for multi-optimal PID tuning rules

    Get PDF
    With the advances in microprocessor technology, control systems are widely seen not only in industry but now also in household appliances and consumer electronics. Among all control schemes developed so far, Proportional plus Integral plus Derivative (PID) control is the most widely adopted in practice. Today, more than 90% of industrial controllers have a built-in PID function. Their wide applications have stimulated and sustained the research and development of PID tuning techniques, patents, software packages and hardware modules. Due to parameter interaction and format variation, tuning a PID controller is not as straightforward as one would have anticipated. Therefore, designing speedy tuning rules should greatly reduce the burden on new installation and ‘time-to-market’ and should also enhance the competitive advantages of the PID system under offer. A multi-objective evolutionary algorithm (MOEA) would be an ideal candidate to conduct the learning and search for multi-objective PID tuning rules. A simple to implement MOEA, termed s-MOEA, is devised and compared with MOEAs developed elsewhere. Extensive study and analysis are performed on metrics for evaluating MOEA performance, so as to help with this comparison and development. As a result, a novel visualisation technique, termed “Distance and Distribution” (DD)” chart, is developed to overcome some of the limitations of existing metrics and visualisation techniques. The DD chart allows a user to view the comparison of multiple sets of high order non-dominated solutions in a two-dimensional space. The capability of DD chart is shown in the comparison process and it is shown to be a useful tool for gathering more in-depth information of an MOEA which is not possible in existing empirical studies. Truly multi-objective global PID tuning rules are then evolved as a result of interfacing the s-MOEA with closed-loop simulations under practical constraints. It takes into account multiple, and often conflicting, objectives such as steady-state accuracy and transient responsiveness against stability and overshoots, as well as tracking performance against load disturbance rejection. These evolved rules are compared against other tuning rules both offline on a set of well-recognised PID benchmark test systems and online on three laboratory systems of different dynamics and transport delays. The results show that the rules significantly outperform all existing tuning rules, with multi-criterion optimality. This is made possible as the evolved rules can cover a delay to time constant ratio from zero to infinity based on first-order plus delay plant models. For second-order plus delay plant models, they can also cover all possible dynamics found in practice
    corecore