6,353 research outputs found

    Compounding process optimization for recycled materials using machine learning algorithms

    Get PDF
    The sustainable manufacturing of goods is one of the factors to minimize natural resource depletion and CO2 emissions. In the last decade a big effort has been done to transition from linear economy to circular economy. This transition requires to implement re-manufacturing processes into the current industrial manufacturing framework, replacing the sourcing of raw materials by re-manufacturing technologies. However, this transition is very challenging since it requires the transformation of the companies and more specially their processes, from traditional to circular. To speed up this transformation, the use of tools provided by the 4th industrial revolution are crucial. In particular, the use of artificial intelligence techniques enables the optimization of the re-manufacturing processes and make those optimizations available to all the stakeholders. This paper presents an optimization system for re-manufacturing of recycled fiber through compounding processes with materials that come from composite waste or end of life of products. The proposed approach has been trained with the data collected from several experiments carried out with a compounding machine under different specifications, fiber reinforcement grades, and output material properties. The system will allow to set up a compounding machine for different types of reinforced plastics needless of setting point experiments. The algorithms have been tested with previously unseen scenarios and they have proved to be efficient for giving the optimal material characteristics.This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 873111 (DIGIPRIME)

    Bidirectional optimization of the melting spinning process

    Get PDF
    This is the author's accepted manuscript (under the provisional title "Bi-directional optimization of the melting spinning process with an immune-enhanced neural network"). The final published article is available from the link below. Copyright 2014 @ IEEE.A bidirectional optimizing approach for the melting spinning process based on an immune-enhanced neural network is proposed. The proposed bidirectional model can not only reveal the internal nonlinear relationship between the process configuration and the quality indices of the fibers as final product, but also provide a tool for engineers to develop new fiber products with expected quality specifications. A neural network is taken as the basis for the bidirectional model, and an immune component is introduced to enlarge the searching scope of the solution field so that the neural network has a larger possibility to find the appropriate and reasonable solution, and the error of prediction can therefore be eliminated. The proposed intelligent model can also help to determine what kind of process configuration should be made in order to produce satisfactory fiber products. To make the proposed model practical to the manufacturing, a software platform is developed. Simulation results show that the proposed model can eliminate the approximation error raised by the neural network-based optimizing model, which is due to the extension of focusing scope by the artificial immune mechanism. Meanwhile, the proposed model with the corresponding software can conduct optimization in two directions, namely, the process optimization and category development, and the corresponding results outperform those with an ordinary neural network-based intelligent model. It is also proved that the proposed model has the potential to act as a valuable tool from which the engineers and decision makers of the spinning process could benefit.National Nature Science Foundation of China, Ministry of Education of China, the Shanghai Committee of Science and Technology), and the Fundamental Research Funds for the Central Universities

    NASA SBIR abstracts of 1990 phase 1 projects

    Get PDF
    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number

    Sustainable Production Methods in Textile Industry

    Get PDF
    The textile industry is part of the industries that continuously harm the environment because of the high water consumption and the presence of various pollutants in the wastewater. Wastewater treatment is lacking or includes only physical treatment in underdeveloped and developing countries due to installation and operating costs of a treatment plant. As a result, a broad spectrum of hazardous and toxic substances, such as (azo) dyes, heavy metals, acids, soda, and aromatic hydrocarbons, pollute precious sources of clean water, in which untreated water is discharged. The main solution to this problem is to reduce the treatment cost. For this purpose, the process should be optimized to reduce the amount of water and chemicals. In this chapter, first studies on the reference document (BAT) referred by the European Council are reviewed. Minimizing production costs, obtaining high-quality products, and reducing the amount and the pollutant content of wastewater are complex problems that cannot be solved by the conventional optimization methods. Therefore, nonconventional optimization methods applied on the textile processes are also reviewed from the latest studies in the literature

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Business analytics in industry 4.0: a systematic review

    Get PDF
    Recently, the term “Industry 4.0” has emerged to characterize several Information Technology and Communication (ICT) adoptions in production processes (e.g., Internet-of-Things, implementation of digital production support information technologies). Business Analytics is often used within the Industry 4.0, thus incorporating its data intelligence (e.g., statistical analysis, predictive modelling, optimization) expert system component. In this paper, we perform a Systematic Literature Review (SLR) on the usage of Business Analytics within the Industry 4.0 concept, covering a selection of 169 papers obtained from six major scientific publication sources from 2010 to March 2020. The selected papers were first classified in three major types, namely, Practical Application, Reviews and Framework Proposal. Then, we analysed with more detail the practical application studies which were further divided into three main categories of the Gartner analytical maturity model, Descriptive Analytics, Predictive Analytics and Prescriptive Analytics. In particular, we characterized the distinct analytics studies in terms of the industry application and data context used, impact (in terms of their Technology Readiness Level) and selected data modelling method. Our SLR analysis provides a mapping of how data-based Industry 4.0 expert systems are currently used, disclosing also research gaps and future research opportunities.The work of P. Cortez was supported by FCT - Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. We would like to thank to the three anonymous reviewers for their helpful suggestions

    A review of optimisation techniques used in the composite recycling area: State-of-the-art and steps towards a research agenda

    Get PDF
    The increased use of carbon fibre and glass fibre reinforced polymer in industry coupled with restrictions on landfill disposal has resulted in a need to develop effective recycling technologies for composites. Currently, mechanical, thermal and chemical approaches have been use to recycle composites. This paper seeks to examine the applications of engineering optimisation techniques in the composite recycling and re-manufacturing processes and their relevant systems, providing an overview of state-of-the-art. This paper is based on a comprehensive review of literature covering nearly all the research papers in this area. These papers are analysed to identify current trends and future research directions. The composite recycling is a relatively new area, and the modelling and optimisation work for composite recycling and re-manufacturing techniques and their relevant systems is still in its infancy. Currently, the optimisation work developed in composite recycling mainly focus on the applications of design of experiments methods. These approaches have been applied to improve the quality of recyclates such as carbon fibres. Some of the soft-computing algorithms have been applied to optimise the re-manufacturing at the system level. Based on the existing research, the area of optimisation for composite recycling and re-manufacturing haven't been well explored despite the fact that many opportunities and requirements for optimisation exist. This means significant amount of modelling and optimisation work is required for the future research. More significantly, considering optimisation at the early stage of a system development is very beneficial in terms of the long term health of the composite recycling industry

    Data-driven multi-scale modeling and robust optimization of composite structure with uncertainty quantification

    Full text link
    It is important to accurately model materials' properties at lower length scales (micro-level) while translating the effects to the components and/or system level (macro-level) can significantly reduce the amount of experimentation required to develop new technologies. Robustness analysis of fuel and structural performance for harsh environments (such as power uprated reactor systems or aerospace applications) using machine learning-based multi-scale modeling and robust optimization under uncertainties are required. The fiber and matrix material characteristics are potential sources of uncertainty at the microscale. The stacking sequence (angles of stacking and thickness of layers) of composite layers causes meso-scale uncertainties. It is also possible for macro-scale uncertainties to arise from system properties, like the load or the initial conditions. This chapter demonstrates advanced data-driven methods and outlines the specific capability that must be developed/added for the multi-scale modeling of advanced composite materials. This chapter proposes a multi-scale modeling method for composite structures based on a finite element method (FEM) simulation driven by surrogate models/emulators based on microstructurally informed meso-scale materials models to study the impact of operational parameters/uncertainties using machine learning approaches. To ensure optimal composite materials, composite properties are optimized with respect to initial materials volume fraction using data-driven numerical algorithms

    Development of a multi-objective optimization algorithm based on lichtenberg figures

    Get PDF
    This doctoral dissertation presents the most important concepts of multi-objective optimization and a systematic review of the most cited articles in the last years of this subject in mechanical engineering. The State of the Art shows a trend towards the use of metaheuristics and the use of a posteriori decision-making techniques to solve engineering problems. This fact increases the demand for algorithms, which compete to deliver the most accurate answers at the lowest possible computational cost. In this context, a new hybrid multi-objective metaheuristic inspired by lightning and Linchtenberg Figures is proposed. The Multi-objective Lichtenberg Algorithm (MOLA) is tested using complex test functions and explicit contrainted engineering problems and compared with other metaheuristics. MOLA outperformed the most used algorithms in the literature: NSGA-II, MOPSO, MOEA/D, MOGWO, and MOGOA. After initial validation, it was applied to two complex and impossible to be analytically evaluated problems. The first was a design case: the multi-objective optimization of CFRP isogrid tubes using the finite element method. The optimizations were made considering two methodologies: i) using a metamodel, and ii) the finite element updating. The last proved to be the best methodology, finding solutions that reduced at least 45.69% of the mass, 18.4% of the instability coefficient, 61.76% of the Tsai-Wu failure index and increased by at least 52.57% the natural frequency. In the second application, MOLA was internally modified and associated with feature selection techniques to become the Multi-objective Sensor Selection and Placement Optimization based on the Lichtenberg Algorithm (MOSSPOLA), an unprecedented Sensor Placement Optimization (SPO) algorithm that maximizes the acquired modal response and minimizes the number of sensors for any structure. Although this is a structural health monitoring principle, it has never been done before. MOSSPOLA was applied to a real helicopter’s main rotor blade using the 7 best-known metrics in SPO. Pareto fronts and sensor configurations were unprecedentedly generated and compared. Better sensor distributions were associated with higher hypervolume and the algorithm found a sensor configuration for each sensor number and metric, including one with 100% accuracy in identifying delamination considering triaxial modal displacements, minimum number of sensors, and noise for all blade sections.Esta tese de doutorado traz os conceitos mais importantes de otimização multi-objetivo e uma revisão sistemática dos artigos mais citados nos últimos anos deste tema em engenharia mecânica. O estado da arte mostra uma tendência no uso de meta-heurísticas e de técnicas de tomada de decisão a posteriori para resolver problemas de engenharia. Este fato aumenta a demanda sobre os algoritmos, que competem para entregar respostas mais precisas com o menor custo computacional possível. Nesse contexto, é proposta uma nova meta-heurística híbrida multi-objetivo inspirada em raios e Figuras de Lichtenberg. O Algoritmo de Lichtenberg Multi-objetivo (MOLA) é testado e comparado com outras metaheurísticas usando funções de teste complexas e problemas restritos e explícitos de engenharia. Ele superou os algoritmos mais utilizados na literatura: NSGA-II, MOPSO, MOEA/D, MOGWO e MOGOA. Após validação, foi aplicado em dois problemas complexos e impossíveis de serem analiticamente otimizados. O primeiro foi um caso de projeto: otimização multi-objetivo de tubos isogrid CFRP usando o método dos elementos finitos. As otimizações foram feitas considerando duas metodologias: i) usando um meta-modelo, e ii) atualização por elementos finitos. A última provou ser a melhor metodologia, encontrando soluções que reduziram pelo menos 45,69% da massa, 18,4% do coeficiente de instabilidade, 61,76% do TW e aumentaram em pelo menos 52,57% a frequência natural. Na segunda aplicação, MOLA foi modificado internamente e associado a técnicas de feature selection para se tornar o Seleção e Alocação ótima de Sensores Multi-objetivo baseado no Algoritmo de Lichtenberg (MOSSPOLA), um algoritmo inédito de Otimização de Posicionamento de Sensores (SPO) que maximiza a resposta modal adquirida e minimiza o número de sensores para qualquer estrutura. Embora isto seja um princípio de Monitoramento da Saúde Estrutural, nunca foi feito antes. O MOSSPOLA foi aplicado na pá do rotor principal de um helicóptero real usando as 7 métricas mais conhecidas em SPO. Frentes de Pareto e configurações de sensores foram ineditamente geradas e comparadas. Melhores distribuições de sensores foram associadas a um alto hipervolume e o algoritmo encontrou uma configuração de sensor para cada número de sensores e métrica, incluindo uma com 100% de precisão na identificação de delaminação considerando deslocamentos modais triaxiais, número mínimo de sensores e ruído para todas as seções da lâmina

    The 1st Advanced Manufacturing Student Conference (AMSC21) Chemnitz, Germany 15–16 July 2021

    Get PDF
    The Advanced Manufacturing Student Conference (AMSC) represents an educational format designed to foster the acquisition and application of skills related to Research Methods in Engineering Sciences. Participating students are required to write and submit a conference paper and are given the opportunity to present their findings at the conference. The AMSC provides a tremendous opportunity for participants to practice critical skills associated with scientific publication. Conference Proceedings of the conference will benefit readers by providing updates on critical topics and recent progress in the advanced manufacturing engineering and technologies and, at the same time, will aid the transfer of valuable knowledge to the next generation of academics and practitioners. *** The first AMSC Conference Proceeding (AMSC21) addressed the following topics: Advances in “classical” Manufacturing Technologies, Technology and Application of Additive Manufacturing, Digitalization of Industrial Production (Industry 4.0), Advances in the field of Cyber-Physical Systems, Virtual and Augmented Reality Technologies throughout the entire product Life Cycle, Human-machine-environment interaction and Management and life cycle assessment.:- Advances in “classical” Manufacturing Technologies - Technology and Application of Additive Manufacturing - Digitalization of Industrial Production (Industry 4.0) - Advances in the field of Cyber-Physical Systems - Virtual and Augmented Reality Technologies throughout the entire product Life Cycle - Human-machine-environment interaction - Management and life cycle assessmen
    corecore