87,088 research outputs found

    Playing Ping Pong with Light: Directional Emission of White Light

    Get PDF
    Over the last decades, light-emitting diodes (LED) have replaced common light bulbs in almost every application, from flashlights in smartphones to automotive headlights. Illuminating nightly streets requires LEDs to emit a light spectrum that is perceived as pure white by the human eye. The power associated with such a white light spectrum is not only distributed over the contributing wavelengths but also over the angles of vision. For many applications, the usable light rays are required to exit the LED in forward direction, namely under small angles to the perpendicular. In this work, we demonstrate that a specifically designed multi-layer thin film on top of a white LED increases the power of pure white light emitted in forward direction. Therefore, the deduced multi-objective optimization problem is reformulated via a real-valued physics-guided objective function that represents the hierarchical structure of our engineering problem. Variants of Bayesian optimization are employed to maximize this non-deterministic objective function based on ray tracing simulations. Eventually, the investigation of optical properties of suitable multi-layer thin films allowed to identify the mechanism behind the increased directionality of white light: angle and wavelength selective filtering causes the multi-layer thin film to play ping pong with rays of light

    Directional emission of white light via selective amplification of photon recycling and Bayesian optimization of multi-layer thin films

    Get PDF
    Over the last decades, light-emitting diodes (LED) have replaced common light bulbs in almost every application, from flashlights in smartphones to automotive headlights. Illuminating nightly streets requires LEDs to emit a light spectrum that is perceived as pure white by the human eye. The power associated with such a white light spectrum is not only distributed over the contributing wavelengths but also over the angles of vision. For many applications, the usable light rays are required to exit the LED in forward direction, namely under small angles to the perpendicular. In this work, we demonstrate that a specifically designed multi-layer thin film on top of a white LED increases the power of pure white light emitted in forward direction. Therefore, the deduced multi-objective optimization problem is reformulated via a real-valued physics-guided objective function that represents the hierarchical structure of our engineering problem. Variants of Bayesian optimization are employed to maximize this non-deterministic objective function based on ray tracing simulations. Eventually, the investigation of optical properties of suitable multi-layer thin films allowed to identify the mechanism behind the increased directionality of white light: angle and wavelength selective filtering causes the multi-layer thin film to play ping pong with rays of light

    A Genetic Algorithm for Chromaticity Correction in Diffraction Limited Storage Rings

    Full text link
    A multi-objective genetic algorithm is developed for optimizing nonlinearities in diffraction limited storage rings. This algorithm determines sextupole and octupole strengths for chromaticity correction that deliver optimized dynamic aperture and beam lifetime. The algorithm makes use of dominance constraints to breed desirable properties into the early generations. The momentum aperture is optimized indirectly by constraining the chromatic tune footprint and optimizing the off-energy dynamic aperture. The result is an effective and computationally efficient technique for correcting chromaticity in a storage ring while maintaining optimal dynamic aperture and beam lifetime. This framework was developed for the Swiss Light Source (SLS) upgrade project.Comment: 12 pages, 14 figure

    MIMO CDMA-based Optical SATCOMs: A New Solution

    Full text link
    A new scheme for MIMO CDMA-based optical satellite communications (OSATCOMs) is presented. Three independent problems are described for up-link and down- link in terms of two distinguished optimization problems. At first, in up-link, Pulse-width optimization is proposed to reduce dispersions over fibers as the terrestrial part. This is performed for return-to-zero (RZ) modulation that is supposed to be used as an example in here. This is carried out by solving the first optimization problem, while minimizing the probability of overlapping for the Gaussian pulses that are used to produce RZ. Some constraints are assumed such as a threshold for the peak-to-average power ratio (PAPR). In down-link, the second and the third problems are discussed as follows, jointly as a closed-form solution. Solving the second optimization problem, an objective function is obtained, namely the MIMO CDMA-based satellite weight-matrix as a conventional adaptive beam-former. The Satellite link is stablished over flat un-correlated Nakagami-m/Suzuki fading channels as the second problem. On the other hand, the mentioned optimization problem is robustly solved as the third important problem, while considering inter-cell interferences in the multi-cell scenario. Robust solution is performed due to the partial knowledge of each cell from the others in which the link capacity is maximized. Analytical results are conducted to investigate the merit of system.Comment: IEEE PCITC 2015 (15-17 Oct, India
    • …
    corecore